Chemistry, Queensland University of Technology, QLD 4001, Australia.
ACS Nano. 2010 Oct 26;4(10):6219-27. doi: 10.1021/nn101708q.
Numerous materials are polycrystalline or consist with crystals of different phases. However, materials consisting of crystals on the nanometer scale (nanocrystals) are not simply aggregates of randomly oriented crystals as is generally regarded. We found, that in four different materials that consist of nanocrystals of two different phases and were obtained by different approaches, the nanocrystals of different phases are combined coherently forming interfaces with a close crystallographic registry between adjacent crystals (coherent interfaces). The four materials were fabricated by (i) depositing Ag(2)O nanoparticles on titanate nanofibers, (ii) phase transition from TiO(2)(B) nanofibers to the nanofibers of mixed TiO(2)(B) and anatase phases, (iii) dehydration of the single crystal fibril titanate core coated with anatase nanocrystals, and (iv) attaching zeolite Y nanocrystals on the surface of titanate nanofibers. The finding suggests that preferred orientations and coherent interfaces generally exist in nanocrystal systems, and according to our results, they are largely unaffected by the fabrication process that was used. This is because the preferred orientations require that the engaged crystal planes from two connected crystals have the same basal spacing and that the crystals can interlock tightly at the atomic level to form thermodynamically stable interfaces. Hence it is rational that the preferred orientations and coherent interfaces dominant the nanostructures formed between the different nanocrystals and play a key role in assembling the composite nanostructures. The orientation and interfaces between crystals of different phases in mixed-phase materials are extremely difficult to determine. Nonetheless, the thermodynamic stability of the coherent interfaces allows us to apply phase-transformation invariant line strain theory to predict the preferred orientation (and thus the structure of the coherent interfaces). The theoretical predications agree remarkably with the transmission electron microscopy (TEM) analysis. This implies that we may acquire knowledge of the orientation and the interface structures in the mixed-phase materials without TEM measurement, and the knowledge is essential for comprehensively understanding properties of the many materials and processes that depend on the interfaces.
许多材料是多晶的或由不同相的晶体组成。然而,由纳米尺度的晶体(纳米晶体)组成的材料并不像通常认为的那样只是随机取向晶体的聚集。我们发现,在由不同方法获得的由两种不同相的纳米晶体组成的四种不同材料中,不同相的纳米晶体是通过形成具有相邻晶体之间紧密晶体配位数的界面而连贯地结合在一起的(连贯界面)。这四种材料是通过以下方法制备的:(i) 将 Ag(2)O 纳米颗粒沉积在钛酸盐纳米纤维上,(ii) 从 TiO(2)(B)纳米纤维向混合 TiO(2)(B)和锐钛矿相的纳米纤维的相变,(iii) 涂覆有锐钛矿纳米晶的单晶纤维钛酸酯核的脱水,以及 (iv) 将沸石 Y 纳米晶附着在钛酸盐纳米纤维的表面上。研究结果表明,在纳米晶体体系中通常存在择优取向和连贯界面,并且根据我们的结果,它们受所使用的制备工艺的影响很小。这是因为择优取向要求两个相连的晶体中的参与晶面具有相同的基面间距,并且晶体可以在原子水平上紧密互锁以形成热力学稳定的界面。因此,合理的是,择优取向和连贯界面主导不同纳米晶体之间形成的纳米结构,并在组装复合纳米结构中发挥关键作用。混合相材料中不同相晶体之间的取向和界面极难确定。尽管如此,连贯界面的热力学稳定性允许我们应用相转变不变线应变理论来预测择优取向(从而预测连贯界面的结构)。理论预测与透射电子显微镜(TEM)分析非常吻合。这意味着我们可以在不进行 TEM 测量的情况下获得混合相材料中的取向和界面结构的知识,而这些知识对于全面理解依赖于界面的许多材料和过程的性质至关重要。