Suppr超能文献

浅型回旋镖状流感血凝素 G13A 突变体结构促进渗漏性膜融合。

Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.

机构信息

Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903-0886, USA.

出版信息

J Biol Chem. 2010 Nov 26;285(48):37467-75. doi: 10.1074/jbc.M110.153700. Epub 2010 Sep 8.

Abstract

Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.

摘要

我们之前的研究表明,流感血凝素 (HA) 融合域的倾斜回旋镖状结构对于病毒通过膜融合进入宿主细胞至关重要。由于野生型融合域的锐角约为 105°,可促进高效的无渗漏膜融合,我们想知道不同的角度是否仍能支持融合从而促进病毒进入。在这里,我们表明 G13A 融合域突变体产生了新的渗漏融合表型。该突变体的融合域结构通过 NMR 光谱在融合 pH 值下的脂质环境中得到解决。突变体采用类似于野生型的回旋镖结构,但扭转角较浅,约为 150°。与野生型相比,突变体对模型膜的结构扰动较小,但比非融合融合域突变体的程度更大。G13A 与脂质双层的结合强度也介于野生型和非融合性突变体之间。这些膜相互作用在流感融合域的结构和功能之间建立了明确的联系:锐角是必需的,可促进适合病毒进入的清洁无渗漏融合,推测是通过融合域与质膜深层的跨膜结构域相互作用。较浅的角度会扰乱靶膜的双层结构,使其变得渗漏,无法形成清洁的融合孔。没有固定回旋镖角度的突变体与双层相互作用较弱,不会促进任何融合或膜扰动。

相似文献

1
Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion.
J Biol Chem. 2010 Nov 26;285(48):37467-75. doi: 10.1074/jbc.M110.153700. Epub 2010 Sep 8.
2
Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.
J Biol Chem. 2006 Mar 3;281(9):5760-70. doi: 10.1074/jbc.M512280200. Epub 2005 Dec 28.
3
Two modes of fusogenic action for influenza virus fusion peptide.
PLoS Comput Biol. 2023 May 26;19(5):e1011174. doi: 10.1371/journal.pcbi.1011174. eCollection 2023 May.
5
Line-tension controlled mechanism for influenza fusion.
PLoS One. 2012;7(6):e38302. doi: 10.1371/journal.pone.0038302. Epub 2012 Jun 28.
9
Structural characterization of an early fusion intermediate of influenza virus hemagglutinin.
J Virol. 2011 May;85(10):5172-82. doi: 10.1128/JVI.02430-10. Epub 2011 Mar 2.

引用本文的文献

1
SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation.
Int J Mol Sci. 2025 Jan 15;26(2):686. doi: 10.3390/ijms26020686.
2
Viral Membrane Fusion: A Dance Between Proteins and Lipids.
Annu Rev Virol. 2023 Sep 29;10(1):139-161. doi: 10.1146/annurev-virology-111821-093413.
3
Modulating the Influenza A Virus-Target Membrane Fusion Interface With Synthetic DNA-Lipid Receptors.
Langmuir. 2022 Feb 22;38(7):2354-2362. doi: 10.1021/acs.langmuir.1c03247. Epub 2022 Feb 10.
4
How proteins open fusion pores: insights from molecular simulations.
Eur Biophys J. 2021 Mar;50(2):279-293. doi: 10.1007/s00249-020-01484-3. Epub 2020 Dec 19.
5
Continuum Models of Membrane Fusion: Evolution of the Theory.
Int J Mol Sci. 2020 May 29;21(11):3875. doi: 10.3390/ijms21113875.
6
Switching between Successful and Dead-End Intermediates in Membrane Fusion.
Int J Mol Sci. 2017 Dec 2;18(12):2598. doi: 10.3390/ijms18122598.
7
Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7987-E7996. doi: 10.1073/pnas.1708052114. Epub 2017 Sep 5.
10
Dual action of BPC194: a membrane active peptide killing bacterial cells.
PLoS One. 2013 Apr 19;8(4):e61541. doi: 10.1371/journal.pone.0061541. Print 2013.

本文引用的文献

1
Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm.
Retrovirology. 2008 Dec 10;5:111. doi: 10.1186/1742-4690-5-111.
2
Viral membrane fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):690-8. doi: 10.1038/nsmb.1456.
3
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219. doi: 10.1080/10409230802058320.
4
Combined NMR and EPR spectroscopy to determine structures of viral fusion domains in membranes.
Biochim Biophys Acta. 2007 Dec;1768(12):3052-60. doi: 10.1016/j.bbamem.2007.09.010. Epub 2007 Sep 25.
5
Locking the kink in the influenza hemagglutinin fusion domain structure.
J Biol Chem. 2007 Aug 17;282(33):23946-56. doi: 10.1074/jbc.M704008200. Epub 2007 Jun 12.
6
Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers.
Biophys J. 2007 Aug 1;93(3):876-85. doi: 10.1529/biophysj.106.102335. Epub 2007 May 18.
7
Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity.
J Biol Chem. 2006 Mar 3;281(9):5760-70. doi: 10.1074/jbc.M512280200. Epub 2005 Dec 28.
9
Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion.
Biophys J. 2003 Sep;85(3):1725-33. doi: 10.1016/S0006-3495(03)74602-5.
10
Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion.
Biochim Biophys Acta. 2003 Jul 11;1614(1):14-23. doi: 10.1016/s0005-2736(03)00159-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验