Suppr超能文献

适用于物理科学的有限数据计算机断层扫描算法。

Limited-data computed tomography algorithms for the physical sciences.

作者信息

Verhoeven D

出版信息

Appl Opt. 1993 Jul 10;32(20):3736-54. doi: 10.1364/AO.32.003736.

Abstract

Five limited-data computed tomography algorithms are compared. The algorithms used are adapted versions of the algebraic reconstruction technique, the multiplicative algebraic reconstruction technique, the Gerchberg-Papoulis algorithm, a spectral extrapolation algorithm descended from that of Harris [J. Opt. Soc. Am. 54, 931-936 (1964)], and an algorithm based on the singular value decomposition technique. These algorithms were used to reconstruct phantom data with realistic levels of noise from a number of different imaging geometries. The phantoms, the imaging geometries, and the noise were chosen to simulate the conditions encountered in typical computed tomography applications in the physical sciences, and the implementations of the algorithms were optimized for these applications. The multiplicative algebraic reconstruction technique algorithm gave the best results overall; the algebraic reconstruction technique gave the best results for very smooth objects or very noisy (20-dB signal-to-noise ratio) data. My implementations of both of these algorithms incorporate apriori knowledge of the sign of the object, its extent, and its smoothness. The smoothness of the reconstruction is enforced through the use of an appropriate object model (by use of cubic B-spline basis functions and a number of object coefficients appropriate to the object being reconstructed). The average reconstruction error was 1.7% of the maximum phantom value with the multiplicative algebraic reconstruction technique of a phantom with moderate-to-steep gradients by use of data from five viewing angles with a 30-dB signal-to-noise ratio.

摘要

对五种有限数据计算机断层扫描算法进行了比较。所使用的算法是代数重建技术、乘法代数重建技术、格奇伯格 - 帕普利斯算法、一种源自哈里斯算法[《美国光学学会杂志》54, 931 - 936 (1964)]的光谱外推算法以及一种基于奇异值分解技术的算法的改编版本。这些算法被用于从多种不同成像几何结构中重建具有实际噪声水平的体模数据。选择体模、成像几何结构和噪声来模拟物理科学中典型计算机断层扫描应用中遇到的条件,并且针对这些应用对算法的实现进行了优化。总体而言,乘法代数重建技术算法给出了最佳结果;代数重建技术对于非常平滑的物体或非常嘈杂(信噪比为20分贝)的数据给出了最佳结果。我对这两种算法的实现都纳入了物体符号、范围及其平滑度的先验知识。通过使用适当的物体模型(通过使用三次B样条基函数和一些适合被重建物体的物体系数)来增强重建的平滑度。对于具有中度到陡峭梯度的体模,使用信噪比为30分贝的五个视角的数据,采用乘法代数重建技术时,平均重建误差为体模最大值的1.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验