Departamento de Lenguajes y Sistemas Informáticos, Escuela Superior de Ingeniería, University of Cádiz, Cádiz, Spain.
IEEE Trans Image Process. 2011 Aug;20(8):2146-52. doi: 10.1109/TIP.2011.2114894. Epub 2011 Feb 17.
In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.
在本文中,我们提出了一种基于离散代数重建技术(DART)的算法,该算法能够从比传统连续层析技术所需的投影数量少得多的投影中计算出高质量的重建。自适应 DART(ADART)在减少与线性系统相关的未知数数量方面比 DART 更进一步,从而显著降低了重建物体的像素误差率。所提出的方法在每次迭代时自动自适应边界定义标准,从而减少属于边界的像素数量,进而减少要解决的一般代数重建线性系统中的未知数数量,这种减少在迭代过程的最后阶段特别重要。实验结果表明,与原始 DART 相比,ADART 在清洁和嘈杂环境中都能显著降低重建误差。