Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
J Am Chem Soc. 2010 Oct 6;132(39):13902-13. doi: 10.1021/ja105522d.
Structures of K(2)(H(2)O)(2)B(12)F(12) and K(2)(H(2)O)(4)B(12)F(12) were determined by X-ray diffraction. They contain K(μ-H(2)O)(2)K and (H(2)O)K(μ-H(2)O)(2)K(H(2)O) dimers, respectively, which interact with superweak B(12)F(12)(2-) anions via multiple K···F(B) interactions and (O)H···F(B) hydrogen bonds (the dimers in K(2)(H(2)O)(4)B(12)F(12) are also linked by (O)H···O hydrogen bonds). DFT calculations show that both dimers are thermodynamically stabilized by the lattice of anions: the predicted ΔE values for the gas-phase dimerization of two K(H(2)O)(+) or K(H(2)O)(2)(+) cations into K(μ-H(2)O)(2)K or (H(2)O)K(μ-H(2)O)(2)K(H(2)O) are +232 and +205 kJ mol(-1), respectively. The calculations also predict that ΔE for the gas-phase reaction 2 K(+) + 2 H(2)O → K(μ-H(2)O)(2)K is +81.0 kJ mol, whereas ΔH for the reversible reaction K(2)B(12)F(12 (s)) + 2 H(2)O((g)) → K(2)(H(2)O)(2)B(12)F(12 (s)) was found to be -111 kJ mol(-1) by differential scanning calorimetry. The K(2)(H(2)O)(0,2,4)B(12)F(12) system is unusual in how rapidly the three crystalline phases (the K(2)B(12)F(12) structure was reported recently) are interconverted, two of them reversibly. Isothermal gravimetric and DSC measurements showed that the reaction K(2)B(12)F(12 (s)) + 2 H(2)O((g)) → K(2)(H(2)O)(2)B(12)F(12 (s)) was complete in as little as 4 min at 25 °C when the sample was exposed to a stream of He or N(2) containing 21 Torr H(2)O((g)). The endothermic reverse reaction required as little as 18 min when K(2)(H(2)O)(2)B(12)F(12) at 25 °C was exposed to a stream of dry He. The products of hydration and dehydration were shown to be crystalline K(2)(H(2)O)(2)B(12)F(12) and K(2)B(12)F(12), respectively, by PXRD, and therefore these reactions are reconstructive solid-state reactions (there is also evidence that they may be single-crystal-to-single-crystal transformations when carried out very slowly). The hydration and dehydration reaction times were both particle-size dependent and carrier-gas flow rate dependent and continued to decrease up to the maximum carrier-gas flow rate of the TGA instrument that was used, demonstrating that the hydration and dehydration reactions were limited by the rate at which H(2)O((g)) was delivered to or swept away from the microcrystal surfaces. Therefore, the rates of absorption and desorption of H(2)O from unit cells at the surface of the microcrystals, and the rate of diffusion of H(2)O across the moving K(2)(H(2)O)(2)B(12)F(12 (s))/K(2)B(12)F(12 (s)) phase boundary, are even faster than the fastest rates of change in sample mass due to hydration and dehydration that were measured. The exchange of 21 Torr H(2)O((g)) with either D(2)O or H(2)(18)O in microcrystalline K(2)(D(2)O)(2)B(12)F(12) or K(2)(H(2)(18)O)(2)B(12)F(12) at 25 °C was also facile and required as little as 45 min to go to completion (H(2)O((g)) replaced both types of isotopically labeled water at the same rate for a given starting sample of K(2)B(12)F(12), demonstrating that water molecules were exchanging, not protons. Significant portions of mass (m) vs time (t) plots for the (1,2)H(2)O((g))/K(2)((2,1)H(2)O)(2)B(12)F(12 (s)) exchange reactions fit the equation m ∝ e(-kt), with 10(3)k = 1.9 s(-1) for one particle size distribution and 10(3)k = 0.50 s(-1) for another. Finally, K(2)(H(2)O)(2)B(12)F(12) was not transformed into K(2)(H(2)O)(4)B(12)F(12) after prolonged exposure to 21 Torr H(2)O((g)) at 25 °C, 37 Torr H(2)O((g)) at 35 °C, or 55 Torr H(2)O((g)) at 45 °C.
K(2)(H(2)O)(2)B(12)F(12)和 K(2)(H(2)O)(4)B(12)F(12)的结构通过 X 射线衍射确定。它们分别包含K(μ-H(2)O)(2)K和(H(2)O)K(μ-H(2)O)(2)K(H(2)O)二聚体,这些二聚体通过多个 K···F(B)相互作用和(O)H···F(B)氢键与超弱 B(12)F(12)(2-)阴离子相互作用(K(2)(H(2)O)(4)B(12)F(12)中的二聚体也通过(O)H···O 氢键连接)。DFT 计算表明,这两个二聚体都通过阴离子的晶格热力学稳定:对于两个 K(H(2)O)(+)或 K(H(2)O)(2)(+)阳离子在气相中聚合为K(μ-H(2)O)(2)K或(H(2)O)K(μ-H(2)O)(2)K(H(2)O)的反应,预测的ΔE 值分别为+232 和+205 kJ mol(-1)。该计算还预测,气相反应 2 K(+) + 2 H(2)O → K(μ-H(2)O)(2)K的ΔE 为+81.0 kJ mol(-1),而通过差示扫描量热法发现可逆反应 K(2)B(12)F(12 (s)) + 2 H(2)O((g)) → K(2)(H(2)O)(2)B(12)F(12 (s))的ΔH 为-111 kJ mol(-1)。K(2)(H(2)O)(0,2,4)B(12)F(12)体系的不同寻常之处在于三种结晶相(最近报道了 K(2)B(12)F(12)结构)之间的相互转换速度非常快,其中两种是可逆的。等温重量法和 DSC 测量表明,当样品在 25°C 下暴露于含有 21 Torr H(2)O((g))的 He 或 N(2)气流中时,反应 K(2)B(12)F(12 (s)) + 2 H(2)O((g)) → K(2)(H(2)O)(2)B(12)F(12 (s))在短短 4 分钟内即可完成。当 K(2)(H(2)O)(2)B(12)F(12)在 25°C 下暴露于干燥的 He 气流中时,需要的时间最短为 18 分钟。水合和脱水产物分别通过 PXRD 显示为结晶的 K(2)(H(2)O)(2)B(12)F(12)和 K(2)B(12)F(12),因此这些反应是重建性的固态反应(有证据表明,当它们以非常缓慢的速度进行时,它们可能是单晶到单晶的转变)。水合和脱水反应时间都与颗粒尺寸和载气流速有关,并且在使用的 TGA 仪器的最大载气流速下继续减小,这表明水合和脱水反应受到 H(2)O((g))输送到或从微晶表面清除的速率限制。因此,表面单位晶胞对 H(2)O 的吸收和解吸速率以及 H(2)O 穿过移动的 K(2)(H(2)O)(2)B(12)F(12 (s))/K(2)B(12)F(12 (s))相边界的扩散速率甚至比由于水合和脱水而导致的样品质量最快变化速率还要快。在 25°C 下,在微结晶 K(2)(D(2)O)(2)B(12)F(12)或 K(2)(H(2)(18)O)(2)B(12)F(12)中用 21 Torr D(2)O 或 H(2)(18)O 交换 21 Torr H(2)O((g))也很容易,完成反应需要的时间最短为 45 分钟(对于给定的 K(2)B(12)F(12)起始样品,两种类型的同位素标记水以相同的速率交换,这表明水分子在交换,而不是质子)。对于 (1,2)H(2)O((g))/K(2)((2,1)H(2)O)(2)B(12)F(12 (s))交换反应,质量 (m) 与时间 (t) 的大量图拟合方程 m ∝ e(-kt),一个粒径分布的 10(3)k = 1.9 s(-1),另一个为 10(3)k = 0.50 s(-1)。最后,K(2)(H(2)O)(2)B(12)F(12)在 25°C 下长时间暴露于 21 Torr H(2)O((g))、37 Torr H(2)O((g))或 45 Torr H(2)O((g))下,并未转化为 K(2)(H(2)O)(4)B(12)F(12)。