Institute of Neuroscience and Medicine (INM-1, INM-2, INM-4), Research Centre Jülich, Jülich, Germany.
Neuroimage. 2011 Jan 15;54(2):1091-101. doi: 10.1016/j.neuroimage.2010.08.075. Epub 2010 Sep 9.
Signal transmission between different brain regions requires connecting fiber tracts, the structural basis of the human connectome. In contrast to animal brains, where a multitude of tract tracing methods can be used, magnetic resonance (MR)-based diffusion imaging is presently the only promising approach to study fiber tracts between specific human brain regions. However, this procedure has various inherent restrictions caused by its relatively low spatial resolution. Here, we introduce 3D-polarized light imaging (3D-PLI) to map the three-dimensional course of fiber tracts in the human brain with a resolution at a submillimeter scale based on a voxel size of 100 μm isotropic or less. 3D-PLI demonstrates nerve fibers by utilizing their intrinsic birefringence of myelin sheaths surrounding axons. This optical method enables the demonstration of 3D fiber orientations in serial microtome sections of entire human brains. Examples for the feasibility of this novel approach are given here. 3D-PLI enables the study of brain regions of intense fiber crossing in unprecedented detail, and provides an independent evaluation of fiber tracts derived from diffusion imaging data.
不同脑区之间的信号传递需要连接纤维束,这是人类连接组学的结构基础。与动物大脑不同,目前有多种示踪方法可用于研究特定人类脑区之间的纤维束,而基于磁共振(MR)的扩散成像是唯一有前途的方法。然而,该方法由于其空间分辨率相对较低,存在各种固有限制。在这里,我们引入了三维偏振光成像(3D-PLI),该方法可以在亚毫米级分辨率下(体素大小为 100μm 各向同性或更小)描绘人类大脑中纤维束的三维走向。3D-PLI 通过利用围绕轴突的髓鞘的固有双折射来显示神经纤维。这种光学方法可以在整个人类大脑的连续切片显微镜中显示 3D 纤维方向。这里给出了该新方法的可行性示例。3D-PLI 可以以前所未有的细节研究纤维交叉密集的脑区,并为来自扩散成像数据的纤维束提供独立评估。