Liu Chao J, Ammon William, Jones Robert J, Nolan Jackson C, Gong Dayang, Maffei Chiara, Blanke Nathan, Edlow Brian L, Augustinack Jean C, Magnain Caroline, Yendiki Anastasia, Villiger Martin, Fischl Bruce, Wang Hui
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 USA.
Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA.
Npj Imaging. 2025;3(1):13. doi: 10.1038/s44303-025-00074-2. Epub 2025 Apr 8.
The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.
准确测量大脑中的三维(3D)纤维方向对于重建纤维通路以及研究它们在神经疾病中的作用至关重要。轴突束和小束的全面重建需要高分辨率技术,这超出了当前活体成像(例如,扩散磁共振成像)的能力。诸如偏振敏感光学相干断层扫描(PS-OCT)之类的光学成像方法可以在微米分辨率下量化纤维方向,但仅限于二维平面内方向,从而阻碍了对三维连通性的全面研究。在这项工作中,我们提出了一种新颖的方法,可利用PS-OCT在死后人类脑组织中在全角度空间中量化体积3D方向。我们从0°和15°的两个照明角度测量大脑样本的偏振对比度,并应用一种计算方法来得出3D光轴方向和真实双折射。我们进一步展示了整个冠状大脑切片和脑干的3D纤维方向图,其平面分辨率为10μm,揭示了纤维结构前所未有的细节。我们设想,我们的方法将为在微观层面上对人类大脑以及其他复杂纤维组织进行大规模3D纤维轴映射开辟一条充满希望的途径。