Suppr超能文献

一种用于并行 MRI 的线圈灵敏度映射的电磁反向方法-理论框架。

An electromagnetic reverse method of coil sensitivity mapping for parallel MRI - theoretical framework.

机构信息

MedTeQ Centre, The School of Information Technology and Electrical Engineering, The University of Queensland St. Lucia, Brisbane, Qld 4072, Australia.

出版信息

J Magn Reson. 2010 Nov;207(1):59-68. doi: 10.1016/j.jmr.2010.08.009. Epub 2010 Aug 17.

Abstract

In this paper, a novel sensitivity mapping method is proposed for the image domain parallel MRI (pMRI) technique. Instead of refining raw sensitivity maps by means of conventional image processing operations such as polynomial fitting, the presented method determines coil sensitivity profiles through an iterative optimization process. During the algorithm implementation the optimization cost function is defined as the difference between the raw sensitivity profile and the desired profile. The minimization is governed by the physics of low-frequency electromagnetic and reciprocity theories. The performance of the method was theoretically investigated and compared with that of a traditional polynomial fitting, against a range of system noise levels. It was found that, the new method produces high-fidelity sensitivity profiles with noise amplitudes, measured as root mean square deviation an order of magnitude less than that of the polynomial fitting method. Using the sensitivity profiles generated by our method, SENSE (sensitivity encoding) reconstructions produce significantly less image artefacts than conventional methods. The successful implementation of this method has far-reaching implications that accurate sensitivity mapping is not only important for parallel reconstruction, but also essential for its transmission analogy, such as Transmit SENSE.

摘要

本文提出了一种新的基于图像域的并行磁共振成像(pMRI)技术灵敏度映射方法。与传统的图像处理操作(如多项式拟合)不同,该方法通过迭代优化过程确定线圈灵敏度分布。在算法实现过程中,优化代价函数定义为原始灵敏度分布与期望分布之间的差异。最小化受低频电磁学和互易性理论的物理规律控制。对该方法的性能进行了理论研究,并与传统的多项式拟合方法进行了比较,考察了一系列系统噪声水平下的性能。结果表明,与传统的多项式拟合方法相比,该方法在噪声幅度下生成的灵敏度分布具有更高的保真度,均方根偏差测量值小一个数量级。使用我们方法生成的灵敏度分布,灵敏度编码(SENSE)重建产生的图像伪影明显少于传统方法。该方法的成功实现具有深远的意义,即准确的灵敏度映射不仅对并行重建很重要,而且对其传输类似技术(如 Transmit SENSE)也很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验