Suppr超能文献

采用SENSE/GRAPPA组合的加速容积磁共振成像

Accelerated volumetric MRI with a SENSE/GRAPPA combination.

作者信息

Blaimer Martin, Breuer Felix A, Seiberlich Nicole, Mueller Matthias F, Heidemann Robin M, Jellus Vladimir, Wiggins Graham, Wald Lawrence L, Griswold Mark A, Jakob Peter M

机构信息

Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany.

出版信息

J Magn Reson Imaging. 2006 Aug;24(2):444-50. doi: 10.1002/jmri.20632.

Abstract

PURPOSE

To combine the specific advantages of the generalized autocalibrating partially parallel acquisitions (GRAPPA) technique and sensitivity encoding (SENSE) with two-dimensional (2D) undersampling.

MATERIALS AND METHODS

By splitting the 2D reconstruction process into multiple one-dimensional (1D) reconstructions, the normal 1D GRAPPA method can be used for image reconstruction. Due to this data-handling process, a GRAPPA reconstruction is performed along the phase-encoding (PE) direction and effectively a SENSE reconstruction is performed along the partition-encoding (PAE) direction.

RESULTS

In vivo experiments demonstrate the successful implementation of the SENSE/GRAPPA combination. Experimental results with up to 9.6-fold acceleration using a prototype 32-channel receiver head coil array are presented.

CONCLUSION

The proposed SENSE/GRAPPA combination for 3D imaging allows the GRAPPA method to be applied in combination with 2D undersampling. Because the SENSE/GRAPPA combination is not based on knowledge of spatial coil sensitivities, it should be the method of choice whenever it is difficult to extract the sensitivity information.

摘要

目的

将广义自校准部分并行采集(GRAPPA)技术和灵敏度编码(SENSE)的特定优势与二维(2D)欠采样相结合。

材料与方法

通过将二维重建过程拆分为多个一维(1D)重建,可使用常规的一维GRAPPA方法进行图像重建。由于这种数据处理过程,GRAPPA重建沿相位编码(PE)方向进行,而实际上SENSE重建沿分区编码(PAE)方向进行。

结果

体内实验证明了SENSE/GRAPPA组合的成功实施。展示了使用原型32通道接收头线圈阵列实现高达9.6倍加速的实验结果。

结论

所提出的用于三维成像的SENSE/GRAPPA组合允许GRAPPA方法与二维欠采样结合应用。由于SENSE/GRAPPA组合不基于空间线圈灵敏度知识,因此在难以提取灵敏度信息时,它应是首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验