Suppr超能文献

比较系统生物学:从细菌到人。

Comparative systems biology: from bacteria to man.

机构信息

Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands.

Netherlands Institute Systems Biology (NISB), The Netherlands.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2010 Sep-Oct;2(5):518-532. doi: 10.1002/wsbm.74.

Abstract

Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network-based rather than component-based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome-scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident.

摘要

比较基因组学和生物信息学的比较分析已被证明是非常强大的,可以深入了解物种之间差异和相似性所依据的特定基因的特性。本章的核心概念是,生物体之间功能差异的重要方面不仅源于遗传成分的差异(这是比较基因组学的基础),还源于动态的、分子的(物理的)相互作用。旨在识别物种之间基于网络而不是基于成分的同源性的方法,我们称之为比较系统生物学。我们将通过来自原核生物、酵母到人类的代谢网络的许多例子来说明这一点。我们将说明使用经典方法在基因组规模上以及在动态分子网络的更详细水平上进行物种比较的潜力。在我们看来,比较系统生物学作为生物信息学和系统生物学的结合,将为医学、生物技术和药物设计带来对生物体本质的新认识。随着动态建模在细胞生物学中变得越来越主流,比较系统生物学的潜力将变得更加明显。

相似文献

1
Comparative systems biology: from bacteria to man.
Wiley Interdiscip Rev Syst Biol Med. 2010 Sep-Oct;2(5):518-532. doi: 10.1002/wsbm.74.
2
An overview of bioinformatics methods for modeling biological pathways in yeast.
Brief Funct Genomics. 2016 Mar;15(2):95-108. doi: 10.1093/bfgp/elv040. Epub 2015 Oct 17.
4
Genome-scale metabolic models of Saccharomyces cerevisiae.
Methods Mol Biol. 2011;759:445-63. doi: 10.1007/978-1-61779-173-4_25.
6
Genome-Scale C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.
Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19.
7
Systems biology from a yeast omics perspective.
FEBS Lett. 2009 Dec 17;583(24):3895-9. doi: 10.1016/j.febslet.2009.11.011.
8
Where are we in genomics?
J Physiol Pharmacol. 2005 Jun;56 Suppl 3:37-70.
9
Big data in yeast systems biology.
FEMS Yeast Res. 2019 Nov 1;19(7). doi: 10.1093/femsyr/foz070.
10
From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
FEMS Yeast Res. 2012 Mar;12(2):129-43. doi: 10.1111/j.1567-1364.2011.00771.x. Epub 2011 Dec 19.

引用本文的文献

1
2
Systems biology of lactic acid bacteria: a critical review.
Microb Cell Fact. 2011 Aug 30;10 Suppl 1(Suppl 1):S11. doi: 10.1186/1475-2859-10-S1-S11.
3
Systems-biology approaches for predicting genomic evolution.
Nat Rev Genet. 2011 Aug 2;12(9):591-602. doi: 10.1038/nrg3033.
4
Toward a holistic view of transcriptional regulation.
Circ Cardiovasc Genet. 2011 Feb;4(1):2-3. doi: 10.1161/CIRCGENETICS.111.959452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验