Department of Bioengineering, Rice University, Houston, Texas 77005, USA.
ACS Nano. 2010 Oct 26;4(10):5721-30. doi: 10.1021/nn101352h.
We investigate surface-enhanced Raman scattering (SERS) from gold-coated silicon-germanium nanocone substrates that are decorated with 30-nm spherical gold nanoparticles (AuNPs). Finite-element simulations suggest that individual nanocones generate stronger electromagnetic enhancement with axial polarization (i.e., polarization parallel to the vertical axis of the nanocones) than with transverse polarization (i.e., polarization in the plane of the nanocone substrate), whereas the excitation in a typical Raman microscope is mainly polarized in the transverse plane. We introduce a practical approach to improve the SERS performance of the substrate by filling the valleys between nanocones with AuNPs. Simulations reveal an enhanced electric field at the nanoscale junctions formed between AuNPs and nanocones, and we explain this lateral coupling with a hybridization model for a particle-film system. We further experimentally verify the added enhancement by measuring SERS from trans-1,2-bi-(4-pyridyl) ethylene molecules absorbed onto the substrates. We report over one order-of-magnitude increase in SERS activities with the AuNP decoration (compared to the nanocone substrate without AuNPs) and achieve a spatially averaged enhancement factor of 1.78 × 10(8) at 785-nm excitation. Understanding and implementing the enhancing mechanism of structured metallic surfaces decorated with plasmonic nanoparticles open possibilities to substantially improve the SERS performance of the existing process-engineered substrates.
我们研究了金包覆的硅锗纳米锥形衬底的表面增强拉曼散射(SERS),这些衬底上装饰有 30nm 球形金纳米粒子(AuNPs)。有限元模拟表明,与横向极化(即平行于纳米锥的垂直轴的极化)相比,单个纳米锥在轴向极化下产生更强的电磁增强(即垂直于纳米锥的垂直轴的极化),而在典型的拉曼显微镜中激发主要是在横向平面极化。我们引入了一种实用的方法,通过在纳米锥之间的谷填充 AuNPs 来提高衬底的 SERS 性能。模拟显示,在 AuNP 和纳米锥之间形成的纳米尺度结处的电场增强,我们用粒子-薄膜系统的杂化模型解释了这种横向耦合。我们通过测量吸附在衬底上的反式-1,2-双-(4-吡啶基)乙烯分子的 SERS 进一步实验验证了附加增强。我们报告说,与没有 AuNPs 的纳米锥衬底相比,AuNP 装饰的 SERS 活性增加了一个数量级以上,在 785nm 激发下实现了 1.78×10(8)的空间平均增强因子。理解和实施具有等离子体纳米粒子装饰的结构化金属表面的增强机制为大幅提高现有工艺工程化衬底的 SERS 性能提供了可能性。