Suppr超能文献

用于药物输送的 pH 响应性纳米粒子。

pH-Responsive nanoparticles for drug delivery.

机构信息

Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.

出版信息

Mol Pharm. 2010 Dec 6;7(6):1913-20. doi: 10.1021/mp100253e. Epub 2010 Oct 27.

Abstract

First-generation nanoparticles (NPs) have been clinically translated as pharmaceutical drug delivery carriers for their ability to improve on drug tolerability, circulation half-life, and efficacy. Toward the development of the next-generation NPs, researchers have designed novel multifunctional platforms for sustained release, molecular targeting, and environmental responsiveness. This review focuses on environmentally responsive mechanisms used in NP designs, and highlights the use of pH-responsive NPs in drug delivery. Different organs, tissues, and subcellular compartments, as well as their pathophysiological states, can be characterized by their pH levels and gradients. When exposed to these pH stimuli, pH-responsive NPs respond with physicochemical changes to their material structure and surface characteristics. These include swelling, dissociating or surface charge switching, in a manner that favors drug release at the target site over surrounding tissues. The novel developments described here may revise the classical outlook that NPs are passive delivery vehicles, in favor of responsive, sensing vehicles that use environmental cues to achieve maximal drug potency.

摘要

第一代纳米颗粒 (NPs) 已被临床转化为药物递送载体,因其能够提高药物耐受性、循环半衰期和疗效。为了开发下一代 NPs,研究人员设计了新型多功能平台,用于持续释放、分子靶向和环境响应。本综述重点介绍了 NP 设计中使用的环境响应机制,并强调了 pH 响应 NPs 在药物递送中的应用。不同的器官、组织和亚细胞区室以及它们的病理生理状态可以通过 pH 值和 pH 梯度来表征。当暴露于这些 pH 刺激时,pH 响应 NPs 会对其材料结构和表面特性发生物理化学变化。这些变化包括溶胀、解离或表面电荷转换,有利于药物在靶部位释放,而不是在周围组织中释放。这里描述的新进展可能会修正 NPs 是被动递送载体的经典观点,转而支持使用环境线索来实现最大药物效力的响应性、感应性载体。

相似文献

1
pH-Responsive nanoparticles for drug delivery.
Mol Pharm. 2010 Dec 6;7(6):1913-20. doi: 10.1021/mp100253e. Epub 2010 Oct 27.
2
pH-Responsive Lipid-Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens.
Mol Pharm. 2019 Nov 4;16(11):4594-4609. doi: 10.1021/acs.molpharmaceut.9b00713. Epub 2019 Oct 16.
3
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.
Chem Soc Rev. 2016 Mar 7;45(5):1457-501. doi: 10.1039/c5cs00798d.
4
Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.
Int J Nanomedicine. 2017 Jun 6;12:4241-4256. doi: 10.2147/IJN.S129748. eCollection 2017.
5
Smart pH-responsive nanomedicines for disease therapy.
J Pharm Investig. 2022;52(4):427-441. doi: 10.1007/s40005-022-00573-z. Epub 2022 May 9.
6
Arginine-α, β-dehydrophenylalanine Dipeptide Nanoparticles for pH-Responsive Drug Delivery.
Pharm Res. 2018 Jan 16;35(2):35. doi: 10.1007/s11095-017-2299-8.
7
Enhanced Cellular Internalization and On-Demand Intracellular Release of Doxorubicin by Stepwise pH-/Reduction-Responsive Nanoparticles.
ACS Appl Mater Interfaces. 2016 Nov 30;8(47):32146-32158. doi: 10.1021/acsami.6b09604. Epub 2016 Nov 15.
8
Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo.
Acta Biomater. 2018 Nov;81:219-230. doi: 10.1016/j.actbio.2018.09.040. Epub 2018 Sep 26.
10
Hydrazone linkages in pH responsive drug delivery systems.
Eur J Pharm Sci. 2017 Mar 1;99:45-65. doi: 10.1016/j.ejps.2016.12.011. Epub 2016 Dec 12.

引用本文的文献

1
Advanced nanotherapies for precision treatment of inflammatory lung diseases.
Bioact Mater. 2025 Jul 20;53:329-365. doi: 10.1016/j.bioactmat.2025.07.028. eCollection 2025 Nov.
2
Updates on cancer vaccines in brain cancer: Advances in neuroblastoma, delivery systems, and emerging technologies.
Hum Vaccin Immunother. 2025 Dec;21(1):2526964. doi: 10.1080/21645515.2025.2526964. Epub 2025 Jul 8.
3
Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers.
Biomedicines. 2025 Jun 13;13(6):1464. doi: 10.3390/biomedicines13061464.
5
Glycopolymeric Nanoparticles Block Breast Cancer Growth by Inhibiting Efferocytosis in the Tumor Microenvironment.
ACS Appl Nano Mater. 2024 Dec 27;7(24):28851-28863. doi: 10.1021/acsanm.4c06534. Epub 2024 Dec 16.
6
Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications.
Nanomaterials (Basel). 2025 Apr 2;15(7):540. doi: 10.3390/nano15070540.
7
High-resolution multi-modal imaging of sub-cellular structures with low numerical aperture objective.
JPhys Photonics. 2025 Apr 30;7(2):025021. doi: 10.1088/2515-7647/adc04f. Epub 2025 Mar 25.
8
Macrophages in graft-versus-host disease (GVHD): dual roles as therapeutic tools and targets.
Clin Exp Med. 2025 Mar 6;25(1):73. doi: 10.1007/s10238-025-01588-0.
9
Nanobody-Targeted Conditional Antimicrobial Therapeutics.
ACS Nano. 2025 Mar 18;19(10):9958-9970. doi: 10.1021/acsnano.4c16007. Epub 2025 Mar 5.
10
Degradable Semi-Cycloaliphatic Epoxy Resin for Recyclable Carbon Fiber-Reinforced Composite Materials.
Polymers (Basel). 2025 Jan 23;17(3):293. doi: 10.3390/polym17030293.

本文引用的文献

1
Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs.
Science. 2010 May 21;328(5981):1031-5. doi: 10.1126/science.1183057. Epub 2010 Apr 8.
2
Breaking down the barriers: siRNA delivery and endosome escape.
J Cell Sci. 2010 Apr 15;123(Pt 8):1183-9. doi: 10.1242/jcs.066399.
4
Tuning the pH sensitivities of orthoester based compounds for drug delivery applications by simple chemical modification.
Bioorg Med Chem Lett. 2010 Apr 1;20(7):2200-3. doi: 10.1016/j.bmcl.2010.02.035. Epub 2010 Feb 13.
6
Emerging applications of stimuli-responsive polymer materials.
Nat Mater. 2010 Feb;9(2):101-13. doi: 10.1038/nmat2614. Epub 2010 Jan 22.
10
Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery.
ACS Nano. 2010 Jan 26;4(1):251-8. doi: 10.1021/nn9014032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验