Sinsheimer Laboratories, Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America.
PLoS One. 2010 Aug 10;5(8):e12094. doi: 10.1371/journal.pone.0012094.
In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N(2), an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2)). While in most legume nodules this H(2) is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2). Rather, endogenous H(2) is efficiently respired at the expense of O(2), driving oxidative phosphorylation, recouping ATP used for H(2) production, and increasing the efficiency of symbiotic nodule N(2) fixation. In many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been presumed a single entity.
METHODOLOGY/PRINCIPAL FINDINGS: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and roots, possesses both orthodox respiratory (exo-)hydrogenase and novel (endo-)hydrogenase activities. These two respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S. rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-hydrogenase structural genes, like the wild-type parent, evolve no detectable H(2) and thus are fully competent for endogenous H(2) recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve endogenous H(2) quantitatively and thus suffer complete loss of H(2) recycling capability. More generally, from bioinformatic analyses, diazotrophic microaerophiles, including rhizobia, which respire H(2) may carry both exo- and endo-hydrogenase gene-sets.
CONCLUSIONS/SIGNIFICANCE: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase to recycle endogenous H(2) produced by N(2) fixation. Thus, H(2) recycling by symbiotic legume nodules may involve multiple respiratory hydrogenases.
在共生的豆科植物根瘤中,共生的根瘤菌(类菌体)固定大气中的 N2,这是一个需要 ATP 的催化过程,产生化学计量的铵和氢气(H2)。虽然在大多数豆科植物根瘤中,这种 H2 会被定量释放,这会消耗代谢能量,但某些类菌体菌株会利用摄取氢气酶的活性,因此几乎不释放或不释放 H2。相反,内源 H2 被有效地消耗,以消耗 O2 为代价,驱动氧化磷酸化,回收用于 H2 产生的 ATP,并提高共生结瘤固氮的效率。自发现它是一种生理过程以来,在随后的许多研究中,类菌体摄取氢气酶的活性被认为是单一的实体。
方法/主要发现:Sesbania rostrata 茎和根的根瘤内共生体 Azorhizobium caulinodans 同时拥有正统的呼吸(外)氢化酶和新型(内)氢化酶活性。这两种呼吸氢化酶在结构上有很大的不同,由不同的、不相关的基因簇编码。如这里所示,在 S. rostrata 共生结瘤中,携带单个外或内氢化酶结构基因敲除等位基因的 A. caulinodans 类菌体,与野生型亲本一样,没有检测到可进化的 H2,因此完全有能力进行内源 H2 的回收。然而,与 A. caulinodans 外、内氢化酶双突变体形成的结瘤,会定量进化内源 H2,从而完全丧失 H2 回收能力。更一般地说,从生物信息学分析来看,包括根瘤菌在内的进行微需氧呼吸的固氮微生物可能携带外和内氢化酶基因簇。
结论/意义:在共生的 S. rostrata 结瘤中,A. caulinodans 类菌体可以利用任何一种呼吸氢化酶来回收由 N2 固定产生的内源 H2。因此,共生豆科植物结瘤中的 H2 回收可能涉及多种呼吸氢化酶。