Department of Biology, McMaster University, Hamilton, Ontario, Canada.
Appl Environ Microbiol. 2012 Apr;78(8):2803-12. doi: 10.1128/AEM.06412-11. Epub 2012 Feb 3.
C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).
C(4)-二羧酸似乎通过三羧酸 (TCA) 循环在豆科植物根瘤中的固氮菌 (类菌体) 中代谢。在苜蓿根瘤中的 Sinorhizobium meliloti 类菌体中,NAD(+) -苹果酸酶 (DME) 是固氮所必需的,并且该活性被认为是用于丙酮酸的补料合成所必需的。相比之下,在豌豆共生体 Rhizobium leguminosarum 中,丙酮酸的合成可以通过 DME 或由磷酸烯醇丙酮酸羧激酶 (PCK) 和丙酮酸激酶 (PYK) 催化的途径发生。在这里,我们报告广谱宿主范围的 Sinorhizobium sp. 菌株 NGR234 的 dme 突变体形成根瘤,其固氮水平因接种的宿主植物而异,从野生型水平的 27%到 83%不等。NGR234 类菌体具有显著的 PCK 活性,虽然单个 pckA 和单个 dme 突变体固氮速率降低,但 pckA dme 双突变体没有固氮活性 (Fix(-))。因此,NGR234 类菌体似乎通过 DME 或 PCK 途径从 TCA 循环中间产物合成丙酮酸。这些 NGR234 数据与其他报道一起表明,S. meliloti dme 突变体的完全 Fix(-)表型可能是特定于苜蓿 - S. meliloti 共生体的。因此,我们研究了 Azorhizobium caulinodans 的 ME 样基因 azc3656 和 azc0119,因为先前的研究表明 azc3656 突变体在热带豆科植物 Sesbania rostrata 上形成 Fix(-)根瘤。我们发现纯化的 AZC3656 蛋白是一种 NAD(P)(+) -苹果酸酶,其活性受到乙酰辅酶 A (acetyl-CoA) 的抑制,并受到琥珀酸和富马酸的刺激。因此,尽管 DME 是 A. caulinodans 和 S. meliloti 共生固氮所必需的,但在其他根瘤菌中,该活性可以通过另一种途径绕过。