Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
Biochemistry. 2010 Nov 2;49(43):9280-91. doi: 10.1021/bi101131f.
PDZ (PSD95/Discs large/ZO-1) domains are ubiquitous protein interaction motifs found in scaffolding proteins involved in signal transduction. Despite the fact that many PDZ domains show a limited tendency to undergo structural change, the PDZ family has been associated with long-range communication and allostery. One of the PDZ domains studied most in terms of structure and biophysical properties is the second PDZ ("PDZ2") domain from protein tyrosine phosphatase 1E (PTP1E, also known as PTPL1). Previously, we showed through NMR relaxation studies that binding of the RA-GEF2 C-terminal peptide substrate results in long-range propagation of side-chain dynamic changes in human PDZ2 [Fuentes, E. J., et al. (2004) J. Mol. Biol. 335, 1105-1115]. Here, we present the first X-ray crystal structures of PDZ2 in the absence and presence of RA-GEF2 ligand, determined to resolutions of 1.65 and 1.3 Å, respectively. These structures deviate somewhat from previously determined NMR structures and indicate that very minor structural changes in PDZ2 accompany peptide binding. NMR residual dipolar couplings confirm the crystal structures to be accurate models of the time-averaged atomic coordinates of PDZ2. The impact on side-chain dynamics was further tested with a C-terminal peptide from APC, which showed results nearly identical to those of RA-GEF2. Thus, allosteric transmission in PDZ2 induced by peptide binding is conveyed purely and robustly by dynamics. (15)N relaxation dispersion measurements did not detect appreciable populations of a kinetic structural intermediate. Collectively, for ligand binding to PDZ2, these data support a lock-and-key binding model from a structural perspective and an allosteric model from a dynamical perspective, which together suggest a complex energy landscape for functional transitions within the ensemble.
PDZ(PSD95/Discs large/ZO-1)结构域是普遍存在的蛋白质相互作用基序,存在于参与信号转导的支架蛋白中。尽管许多 PDZ 结构域显示出结构改变的有限趋势,但 PDZ 家族与远程通讯和变构作用有关。在结构和生物物理特性方面研究最多的 PDZ 结构域之一是蛋白酪氨酸磷酸酶 1E(PTP1E,也称为 PTPL1)的第二个 PDZ(“PDZ2”)结构域。以前,我们通过 NMR 弛豫研究表明,RA-GEF2 C 末端肽底物的结合导致人 PDZ2 中侧链动态变化的远程传播[Fuentes,E. J.,等。(2004 年)J. Mol. Biol. 335, 1105-1115]。在这里,我们展示了 PDZ2 在没有和存在 RA-GEF2 配体的情况下的第一个 X 射线晶体结构,分辨率分别为 1.65 和 1.3 Å。这些结构与以前确定的 NMR 结构略有不同,表明 PDZ2 伴随肽结合的结构变化很小。NMR 残基偶极耦合证实晶体结构是 PDZ2 时间平均原子坐标的准确模型。用 APC 的 C 末端肽进一步测试了对侧链动力学的影响,结果与 RA-GEF2 的结果几乎相同。因此,肽结合诱导的 PDZ2 变构传递完全由动力学传递。(15)N 弛豫色散测量未检测到动力学结构中间产物的可观群体。总的来说,对于 PDZ2 与配体的结合,这些数据从结构角度支持锁钥结合模型,从动力学角度支持变构模型,这共同表明功能转换的复杂能量景观在整个体系中。