Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
Protein Sci. 2010 Nov;19(11):2210-8. doi: 10.1002/pro.499.
Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site-specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP-binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP-binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP-binding residues in the central portion of the transposase coding region. This clone, amino acids 275-409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP-binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N-terminal THAP DNA-binding domain attached to an extended leucine zipper coiled-coil dimerization domain in the P element transposase, precisely delineating the DNA-binding and dimerization activities on the primary sequence. This study highlights the use of a GFP-based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions.
三磷酸鸟苷(GTP)结合和水解事件通常作为蛋白质中的分子开关,调节许多信号分子和运输系统中活性和非活性状态之间的构象变化。果蝇的 P 元件转座酶需要 GTP 结合才能沿着其反应途径前进,继初始的特异性 DNA 结合之后。GTP 结合是 P 元件所特有的,可能代表一种新的转座调控形式,允许结合的转座酶找到第二个位点,使转座子 DNA 形成环,进行链切割和切除。GTP 结合活性以前被映射到转座酶蛋白的中心部分;然而,P 元件转座酶与已知的 GTP 结合折叠几乎没有序列同一性。为了鉴定可溶性、活性的转座酶结构域,使用 GFP 可溶性筛选来测试大肠杆菌中随机 P 元件基因片段的可溶性。该筛选产生了一个跨越转座酶编码区中心部分已知 GTP 结合残基的克隆。这个克隆,P 元件转座酶的 275-409 个氨基酸,是可溶性的,在大肠杆菌中高度表达,并具有 GTP 结合活性,因此是未来生化和结构研究的候选者。此外,嵌合筛选揭示了一个最小的 N 端 THAP DNA 结合域连接到 P 元件转座酶中扩展的亮氨酸拉链卷曲螺旋二聚化结构域,在一级序列上精确地划定了 DNA 结合和二聚化活性。本研究强调了在大型多结构域蛋白上使用 GFP 基础的可溶性筛选来鉴定高度表达的可溶性截断结构域亚区。