Biology of Intracellular Pathogens Inserm Avenir Group, Institut Pasteur Korea, Seongbuk-gu, Seoul, Korea.
PLoS Pathog. 2010 Sep 9;6(9):e1001100. doi: 10.1371/journal.ppat.1001100.
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials.
结核分枝杆菌阻止吞噬体成熟的能力被认为是其在宿主巨噬细胞内存活的主要机制之一。为了鉴定参与这一过程的分枝杆菌基因,我们开发了一种高通量表型细胞检测方法,能够对超过 11000 个结核分枝杆菌突变体进行单个亚细胞分析。这种非常严格的检测方法利用了细胞内酸性室的荧光染色,并采用自动共聚焦显微镜定量确定结核分枝杆菌的细胞内定位。我们对吞噬后早期最频繁进入酸化室的 10 个突变体进行了特征描述,表明它们丧失了阻止吞噬体成熟的能力。对这些突变体的分子分析主要揭示了细胞壁生物合成( fadD28 )、ESX-1 分泌系统( espL/Rv3880 )、钼喋呤生物合成( moaC1 和 moaD1 )以及一个新基因座 Rv1503c-Rv1506c 中的基因的中断。最有趣的是,Rv1503c 和 Rv1506c 突变体在酰基海藻糖糖脂的生物合成中受到干扰。我们的结果表明,这种糖脂确实在结核分枝杆菌的早期细胞内命运中起着关键作用。这里开发的无偏方法可以很容易地适应于胞内病原体的功能基因组学研究,同时也可以集中发现新的抗菌药物。