Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
J Mol Model. 2011 Jun;17(6):1401-12. doi: 10.1007/s00894-010-0841-2. Epub 2010 Sep 16.
Pharmacological studies from our group [Lima et al. Pharmacol Biochem Behav 92:508, (2009)] revealed that geissospermine (GSP), the major alkaloid of the bark extract of Brazilian Geissospermum vellosii, inhibits acetylcholinesterases (AChEs) in the brains of rats and electric eels (Electrophorus electricus). However, the binding mode (i.e., conformation and orientation) of this indole-indoline alkaloid into the AChE active site is unknown. Therefore, in order to propose a plausible binding mode between GSP and AChE, which might explain the observed experimental inhibitory activity, we performed comparative automatic molecular docking simulations using the AutoDock and Molegro Virtual Docker (MVD) programs. A sample of ten crystal structures of the Pacific electric ray (Torpedo californica) TcAChE, in complex with ten diverse active site ligands, was selected as a robust re-docking validation test, and also for GSP docking. The MVD results indicate a preferential binding mode between GSP and AChE, in which GSP functional groups may perform specific interactions with residues in the enzyme active site, according to the ligand-protein contacts detected by the LPC/CSU server. Four hydrogen bonds were detected between GSP and Tyr121, Ser122, Ser200, and His440, in which the last two residues belong to the catalytic triad (Ser200···His440···Glu327). Hydrophobic and π-π stacking interactions were also detected between GSP and Phe330 and Trp84, respectively; these are involved in substrate stabilization at the active site. This study provides the basis to propose structural changes to the GSP structure, such as molecular simplification and isosteric replacement, in order to aid the design of new potential AChE inhibitors that are relevant to the treatment of Alzheimer's disease.
我们小组的药理学研究[Lima 等人,《Pharmacol Biochem Behav》92:508,(2009)]表明,巴西吉桑斯树皮提取物中的主要生物碱吉斯索林(GSP)抑制大鼠和电鳗(Electrophorus electricus)大脑中的乙酰胆碱酯酶(AChE)。然而,这种吲哚-吲哚啉生物碱与 AChE 活性位点的结合方式(即构象和取向)尚不清楚。因此,为了提出 GSP 与 AChE 之间可能的结合模式,从而解释观察到的实验抑制活性,我们使用 AutoDock 和 Molegro Virtual Docker(MVD)程序进行了比较自动分子对接模拟。选择了十个太平洋电鳐(Torpedo californica)TcAChE 与十个不同的活性位点配体形成复合物的晶体结构作为稳健的重新对接验证测试,也用于 GSP 对接。MVD 结果表明,GSP 与 AChE 之间存在一种优先的结合模式,根据 LPC/CSU 服务器检测到的配体-蛋白接触,GSP 官能团可能与酶活性位点中的残基发生特定相互作用。在 GSP 与 Tyr121、Ser122、Ser200 和 His440 之间检测到四个氢键,其中最后两个残基属于催化三联体(Ser200···His440···Glu327)。还分别在 GSP 与 Phe330 和 Trp84 之间检测到疏水和π-π堆积相互作用;这些相互作用参与了活性位点中底物的稳定化。这项研究为提出 GSP 结构的结构变化提供了依据,例如分子简化和等排替代,以帮助设计新的潜在 AChE 抑制剂,这些抑制剂与阿尔茨海默病的治疗相关。