Suppr超能文献

哺乳动物轴突拉伸载荷下细胞骨架的动态变化。

Cytoskeletal dynamics in response to tensile loading of mammalian axons.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.

出版信息

Cytoskeleton (Hoboken). 2010 Oct;67(10):650-65. doi: 10.1002/cm.20478.

Abstract

In response to an applied tensile load, axons of cultured neurons exhibit a number of morphological responses. We designed and implemented a cell stretching device to study the cellular mechanisms governing these responses. Rat sensory neurons were seeded onto a flexible silicone substrate and imaged during substrate stretch. The positions of stationary mitochondria, docked to the axonal cytoskeleton, were determined before and after 10% stretch, and used to calculate the resulting "instantaneous" strain in regions of the axon. There was dramatic heterogeneity in strain along the length of the stretched axons, particularly in regions shorter than 20 μm. The substrate was then held at 10% strain and the axons imaged for 20 min during "relaxation." Both strain magnitude and variability were larger at small lengths in stretched axons during the initial phase of relaxation, but after 14 min, decreased to levels smaller than those seen in unstretched axons. Mitochondrial pairs in stretched axons showed uncoordinated movement with each other at all lengths, suggesting that cytoskeletal cohesion is reduced after stretch. Collectively, these data present the axonal cytoskeleton as a dynamic structure, which responds to stretch rapidly and locally. Globally, the axon behaves as a viscoelastic continuum. Below a characteristic length, though, it appears to behave as a series of independent linked elements, each with unique mechanical properties which suggests a length scale within which cytoskeletal structural elements may be altered to modulate the biomechanical response of the axon. Finally, testable hypotheses of strain accomodation in the axon are suggested.

摘要

在受到外部拉伸力的作用时,培养神经元的轴突会表现出多种形态反应。我们设计并实现了一种细胞拉伸装置,以研究控制这些反应的细胞机制。我们将大鼠感觉神经元种在弹性硅基底上,并在基底拉伸过程中对其进行成像。在 10%的拉伸之前和之后,确定固定在轴突细胞骨架上的停靠线粒体的位置,并用于计算轴突区域的“瞬时”应变。在拉伸的轴突的长度上,应变存在显著的异质性,特别是在短于 20 μm 的区域。然后,将基底保持在 10%的应变,并在“松弛”过程中对轴突进行 20 分钟的成像。在松弛的初始阶段,小长度的拉伸轴突中的应变幅度和可变性都更大,但在 14 分钟后,应变幅度减小到小于未拉伸轴突的水平。在所有长度上,拉伸轴突中的线粒体对显示出不协调的运动,这表明轴突骨架的内聚性在拉伸后降低。总的来说,这些数据表明,轴突细胞骨架是一种动态结构,它可以快速而局部地对拉伸做出反应。从整体上看,轴突表现为粘弹性连续体。然而,在低于某个特征长度后,它似乎表现为一系列独立的连接元素,每个元素都具有独特的机械特性,这表明在细胞骨架结构元素可能发生变化以调节轴突生物力学响应的长度尺度内。最后,提出了轴突中应变适应的可测试假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验