Suppr超能文献

优化基于 MALDI-TOF 的低分子量血清蛋白质组图谱分析在乳腺癌患者检测中的应用;白蛋白去除对分类性能的影响。

Optimizing of MALDI-ToF-based low-molecular-weight serum proteome pattern analysis in detection of breast cancer patients; the effect of albumin removal on classification performance.

机构信息

Maria Sklodowska-Curie Memorial Cancer Center, Gliwice, Poland.

出版信息

Neoplasma. 2010;57(6):537-44. doi: 10.4149/neo_2010_06_537.

Abstract

Mass spectrometry-based analysis of the serum proteome allows identifying multi-peptide patterns/signatures specific for blood of cancer patients, thus having high potential value for cancer diagnostics. However, because of problems with optimization and standardization of experimental and computational design, none of identified proteome patterns/signatures was approved for diagnostics in clinical practice as yet. Here we compared two methods of serum sample preparation for mass spectrometry-based proteome pattern analysis aimed to identify biomarkers that could be used in early detection of breast cancer patients. Blood samples were collected in a group of 92 patients diagnosed at early (I and II) stages of the disease before the start of therapy, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and analyzed using MALDI-ToF spectrometry, either directly or after membrane filtration (50 kDa cut-off) to remove albumin and other large serum proteins. Mass spectra of the low-molecular-weight fraction (2-10 kDa) of the serum proteome were resolved using the Gaussian mixture decomposition, and identified spectral components were used to build classifiers that differentiated samples from breast cancer patients and healthy persons. Mass spectra of complete serum and membrane-filtered albumin-depleted samples have apparently different structure and peaks specific for both types of samples could be identified. The optimal classifier built for the complete serum specimens consisted of 8 spectral components, and had 81% specificity and 72% sensitivity, while that built for the membrane-filtered samples consisted of 4 components, and had 80% specificity and 81% sensitivity. We concluded that pre-processing of samples to remove albumin might be recommended before MALDI-ToF mass spectrometric analysis of the low-molecular-weight components of human serum Keywords: albumin removal; breast cancer; clinical proteomics; mass spectrometry; pattern analysis; serum proteome.

摘要

基于质谱的血清蛋白质组分析可以鉴定出针对癌症患者血液的多肽模式/特征,因此在癌症诊断方面具有很高的潜在价值。然而,由于实验和计算设计的优化和标准化问题,迄今为止,没有一种鉴定的蛋白质组模式/特征被批准用于临床实践中的诊断。在这里,我们比较了两种用于基于质谱的蛋白质组模式分析的血清样品制备方法,旨在鉴定可用于早期检测乳腺癌患者的生物标志物。采集了一组 92 名在开始治疗前被诊断为早期(I 和 II 期)疾病的患者和一组年龄匹配的健康对照者(104 名女性)的血液样本。使用 MALDI-ToF 光谱仪直接或在膜过滤(50 kDa 截止)后对血清标本进行纯化和分析,以去除白蛋白和其他大的血清蛋白。使用高斯混合分解解析血清蛋白质组的低分子量(2-10 kDa)部分的质谱,并使用鉴定的光谱成分构建区分乳腺癌患者和健康个体样本的分类器。完整血清和膜过滤的白蛋白耗尽样品的质谱显然具有不同的结构,并且可以鉴定出两种类型样品特有的峰。为完整血清标本构建的最佳分类器由 8 个光谱成分组成,特异性为 81%,敏感性为 72%,而针对膜过滤样品构建的分类器由 4 个成分组成,特异性为 80%,敏感性为 81%。我们得出结论,在进行 MALDI-ToF 质谱分析之前,建议对样品进行预处理以去除白蛋白,以分析人血清的低分子量成分。关键词:白蛋白去除;乳腺癌;临床蛋白质组学;质谱;模式分析;血清蛋白质组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验