School of Biotechnology, Gautam Buddha University, Greater Noida-201308, India.
Malar J. 2010 Sep 16;9:258. doi: 10.1186/1475-2875-9-258.
Multidrug-resistant Plasmodium is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death.
Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells.
Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the Plasmodium genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between Plasmodium and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to Plasmodium-infected RBCs (iRBCs) and different Plasmodium organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more Plasmodium cell membrane translocation peptide seems achievable.
Targeting of the Plasmodium genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.
目前,多药耐药性疟原虫是一个主要关注点。有效的疫苗或成功应用 RNAi 为基础的疟疾治疗策略目前还不可用。在疟疾研究领域,一个尚未开发的领域是开发针对 DNA 的药物,这些药物可以特异性地与寄生虫 DNA 相互作用并引入有害变化,导致重要基因组功能丧失和寄生虫死亡。
锌指核酸酶 (ZFN) 的发展进展,具有工程化的 DNA 识别结构域,使我们能够设计和开发具有高靶序列特异性的核酸酶,其识别位点通常在基因组中仅出现一次。此外,细胞穿透肽 (CPP) 可以穿过细胞膜并将共轭蛋白、核酸或任何其他货物递送到细胞质、核或线粒体。本文提出,CPP 和 ZFN 系统的组合药物可以有效地进入细胞内寄生虫,在其基因组中引入有害变化,并从感染细胞中消除寄生虫。
超过 45 个三联体的 DNA 结合基序的可用性及其模块化性质,以及在 ZFN 中改变手指数量的自由性,使得针对任何基因的不同靶 DNA 序列的定制 ZFN 的开发成为可能。由于疟原虫基因组富含 AT,即使在疟原虫和人类之间结构和功能保守的酶之间,也存在相当大的序列位点多样性。CPP 可用于将 ZFN 递送至寄生虫的细胞内核。已经实现了基于信号肽的异源蛋白向感染 RBCs (iRBCs) 和不同疟原虫细胞器的转运。通过成功融合 CPP 与线粒体和核靶向肽,融合 CPP 与另一个疟原虫细胞膜转运肽似乎是可行的。
使用 ZFN 靶向疟原虫基因组具有开发抗疟药物的巨大潜力。它可以开发一种针对所有疟疾感染的单一药物,包括多药耐药株。在单个基因中存在多个 ZFN 靶位点将提供替代的药物靶位点,以对抗未来耐药性的发展。