Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
Anal Chem. 2010 Oct 15;82(20):8591-7. doi: 10.1021/ac101679j.
This work combines pulsed hydrogen/deuterium exchange (HDX) and top-down mass spectrometry for the structural characterization of short-lived protein folding intermediates. A custom-built flow device with three sequential mixing steps is used for (i) triggering protein folding, (ii) pulsed D(2)O labeling, and (iii) acid quenching. The earliest folding time point that can be studied with this system is 10 ms. The mixing device was coupled online to the electrospray source of a Fourier transform mass spectrometer, where intact protein ions are fragmented by electron capture dissociation (ECD). The viability of this experimental strategy is demonstrated by applying it to the refolding of horse apo-myoglobin (aMb), a reaction known to involve a transient intermediate. Cooling of the mixing device to 0 °C reduces the reaction rate such that the folding process occurs within the experimentally accessible time window. Top-down ECD provides an average spatial resolution of ca. 2 residues, surpassing the resolution typically achieved in traditional proteolytic digestion/HDX studies. Amide back exchange is virtually eliminated by the short (∼1 s) duration of the acid quenching step. The aMb folding intermediate exhibits HDX protection in helices G and H, whereas the remainder of the protein is largely unfolded. Marginal protection is seen for helix A. Overall, the top-down ECD approach used here offers insights into the sequence of events leading from the unfolded state to the native conformation, with envisioned future applications in the areas of protein misfolding and aggregation. The time-resolved experiments reported herein represent an extension of our previous work, where HDX/MS with top-down ECD was employed for monitoring "static" protein structures under equilibrium conditions (Pan et al. J. Am. Chem. Soc. 2009, 131, 12801).
这项工作结合了脉冲氢/氘交换(HDX)和自上而下的质谱法,用于研究短寿命蛋白质折叠中间体的结构。使用带有三个连续混合步骤的定制流动装置进行(i)触发蛋白质折叠,(ii)脉冲 D2O 标记,和(iii)酸淬灭。该系统可以研究的最早折叠时间点为 10ms。混合装置与傅里叶变换质谱仪的电喷雾源在线耦合,其中完整的蛋白质离子通过电子捕获解离(ECD)进行碎裂。通过将该实验策略应用于马脱辅肌红蛋白(aMb)的重折叠反应来证明其可行性,该反应已知涉及瞬时中间体。将混合装置冷却至 0°C 可降低反应速率,使折叠过程发生在实验可及的时间窗口内。自上而下的 ECD 提供约 2 个残基的平均空间分辨率,超过了传统蛋白水解/HDX 研究中通常达到的分辨率。通过酸淬灭步骤的短暂(约 1s)持续时间,几乎消除了酰胺回交换。aMb 折叠中间体在螺旋 G 和 H 中显示出 HDX 保护,而蛋白质的其余部分则大部分展开。螺旋 A 显示出轻微的保护。总体而言,这里使用的自上而下的 ECD 方法提供了对从展开状态到天然构象的事件序列的深入了解,预计在蛋白质错误折叠和聚集等领域有未来的应用。本文报道的时间分辨实验是对我们以前工作的扩展,其中自上而下的 ECD 与 HDX/MS 一起用于监测平衡条件下的“静态”蛋白质结构(Pan 等人,J. Am. Chem. Soc. 2009, 131, 12801)。