Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States.
Anal Chem. 2024 Sep 17;96(37):14963-14970. doi: 10.1021/acs.analchem.4c03070. Epub 2024 Aug 30.
Solution-phase hydrogen/deuterium exchange (HDX) coupled to native ion mobility spectrometry mass spectrometry (IMS-MS) can provide complementary structural information about the conformational dynamics of biological molecules. In the present work, the solution-stable isotope labeling (SIL) combined with trapped ion mobility spectrometry (TIMS) in tandem with top-down electron capture dissociation (ECD) is illustrated for the structural characterization of the solution native states of ubiquitin. Four different ubiquitin electrospray solution conditions: (i) single-tip nondeuterated, (ii) theta tip for online SIL HDX, (iii) single-tip SIL-deuterated, and (iv) theta tip for online SIL H/D back exchange (HDbX), were investigated to assess the H/D exchange reactivities of native ubiquitin. The combination of TIMS and ECD in a q-ToF MS instrument allowed for additional inspection of gas-phase HDbX added by top-down fragmentation, revealing the exposed and protected residues with limited scrambling effects (e.g., intramolecular H/D migration). A native charge state distribution (5+ to 7+) and TIMS profiles were observed under the single-tip nondeuterated solution conditions. Mass shift distributions of ∼40, ∼104, and ∼87D were observed when incorporating deuterium for online SIL HDX, SIL HDX, and online SIL HDbX, respectively, while retaining similar conformational states. ECD fragmentation allowed for the localization of the deuterated labeled residues of the peptide fragments, with a sequence coverage of ∼90%, for each of the ubiquitin solution condition. Changes in the TIMS trapping time settings (∼70 to ∼795 ms) were used to determine the H/D back exchange dynamics of native ubiquitin. HDbX-TIMS-q-ECD-MS/MS exhibited H/D back exchanges in the six-residue C-terminal tail as well as around Lys6, Lys11, Lys33, Lys48, and Lys63 residues, indicating that these regions are the most exposed area (less protected hydrogens) of ubiquitin as compared to the rest of the core residues that adopt a compact β-grasp fold (protected hydrogens), which was consistent with the accessible surface area of ubiquitin. The present data highlight for the first time consistency between the solution HDX and gas-phase HDbX-TIMS data for native studies.
溶液相氢/氘交换(HDX)与天然离子淌度谱质谱联用(IMS-MS)可提供生物分子构象动力学的互补结构信息。本工作中,展示了溶液稳定同位素标记(SIL)与串联的俘获离子淌度谱(TIMS)和自上而下的电子捕获解离(ECD)相结合,用于鉴定泛素溶液天然态的结构特征。研究了四种不同的泛素电喷雾溶液条件:(i)单尖端未氘代,(ii)用于在线 SIL HDX 的 theta 尖端,(iii)单尖端 SIL-氘代,和(iv)用于在线 SIL H/D 回交换(HDbX)的 theta 尖端,以评估天然泛素的 H/D 交换反应性。在 q-ToF MS 仪器中组合 TIMS 和 ECD 允许对自上而下碎裂添加的气相 HDbX 进行额外检查,揭示了具有有限扩散效应(例如,分子内 H/D 迁移)的暴露和保护残基。在单尖端未氘代溶液条件下观察到天然电荷状态分布(5+至 7+)和 TIMS 谱。当在线 SIL HDX、SIL HDX 和在线 SIL HDbX 中分别掺入氘时,观察到约 40、104 和 87D 的质量位移分布,同时保持相似的构象状态。ECD 碎裂允许对肽片段的氘标记残基进行定位,对于每种泛素溶液条件,都有约 90%的序列覆盖率。改变 TIMS 捕获时间设置(约 70 至约 795ms)用于确定天然泛素的 H/D 回交换动力学。HDbX-TIMS-q-ECD-MS/MS 显示六残基 C 末端尾部以及 Lys6、Lys11、Lys33、Lys48 和 Lys63 残基周围的 H/D 回交换,表明与其余核心残基相比,这些区域是泛素最暴露的区域(较少保护的氢),这些核心残基采用紧凑的 β-抓握折叠(保护的氢),这与泛素的可及表面积一致。本数据首次突出了天然研究中溶液 HDX 和气相 HDbX-TIMS 数据之间的一致性。