Suppr超能文献

基于无信息变量消除和互信息的光谱多元校正集成方法。

An ensemble method based on uninformative variable elimination and mutual information for spectral multivariate calibration.

机构信息

Department of Chemistry and Chemical engineering, Yibin University, Yibin, Sichuan 644007, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2010 Dec;77(5):960-4. doi: 10.1016/j.saa.2010.08.031. Epub 2010 Aug 27.

Abstract

Based on the combination of uninformative variable elimination (UVE), bootstrap and mutual information (MI), a simple ensemble algorithm, named ESPLS, is proposed for spectral multivariate calibration (MVC). In ESPLS, those uninformative variables are first removed; and then a preparatory training set is produced by bootstrap, on which a MI spectrum of retained variables is calculated. The variables that exhibit higher MI than a defined threshold form a subspace on which a candidate partial least-squares (PLS) model is constructed. This process is repeated. After a number of candidate models are obtained, a small part of models is picked out to construct an ensemble model by simple/weighted average. Four near/mid-infrared (NIR/MIR) spectral datasets concerning the determination of six components are used to verify the proposed ESPLS. The results indicate that ESPLS is superior to UVEPLS and its combination with MI-based variable selection (SPLS) in terms of both the accuracy and robustness. Besides, from the perspective of end-users, ESPLS does not increase the complexity of a calibration when enhancing its performance.

摘要

基于无信息变量消除 (UVE)、引导和互信息 (MI) 的组合,提出了一种简单的集成算法,称为 ESPLS,用于光谱多元校准 (MVC)。在 ESPLS 中,首先去除那些无信息的变量;然后通过引导生成一个预备训练集,在该训练集上计算保留变量的 MI 谱。表现出比定义的阈值更高的 MI 的变量形成一个子空间,在此子空间上构建候选偏最小二乘 (PLS) 模型。此过程重复进行。获得多个候选模型后,选择一小部分模型通过简单/加权平均来构建集成模型。使用四个近/中红外 (NIR/MIR) 光谱数据集来验证所提出的 ESPLS,这些数据集涉及到六个成分的测定。结果表明,与 UVEPLS 及其与基于 MI 的变量选择 (SPLS) 的组合相比,ESPLS 在准确性和稳健性方面都具有优势。此外,从最终用户的角度来看,在提高性能的同时,ESPLS 不会增加校准的复杂性。

相似文献

1
An ensemble method based on uninformative variable elimination and mutual information for spectral multivariate calibration.
Spectrochim Acta A Mol Biomol Spectrosc. 2010 Dec;77(5):960-4. doi: 10.1016/j.saa.2010.08.031. Epub 2010 Aug 27.
2
Improvement of spectral calibration for food analysis through multi-model fusion.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Oct;96:526-31. doi: 10.1016/j.saa.2012.05.079. Epub 2012 Jun 6.
3
Variable-weighted least-squares support vector machine for multivariate spectral analysis.
Talanta. 2010 Mar 15;80(5):1698-701. doi: 10.1016/j.talanta.2009.10.009. Epub 2009 Oct 13.
4
Mutual information-induced interval selection combined with kernel partial least squares for near-infrared spectral calibration.
Spectrochim Acta A Mol Biomol Spectrosc. 2008 Dec 15;71(4):1266-73. doi: 10.1016/j.saa.2008.03.033. Epub 2008 Apr 1.
5
Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration.
Anal Chim Acta. 2009 Aug 19;648(1):77-84. doi: 10.1016/j.aca.2009.06.046. Epub 2009 Jun 24.
7
A multi-model fusion strategy for multivariate calibration using near and mid-infrared spectra of samples from brewing industry.
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar 15;105:1-7. doi: 10.1016/j.saa.2012.12.023. Epub 2012 Dec 14.
8
An ensemble of Monte Carlo uninformative variable elimination for wavelength selection.
Anal Chim Acta. 2008 Apr 7;612(2):121-5. doi: 10.1016/j.aca.2008.02.032. Epub 2008 Feb 23.
10
Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice.
Anal Chim Acta. 2010 Feb 5;659(1-2):229-37. doi: 10.1016/j.aca.2009.11.045. Epub 2009 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验