Suppr超能文献

开发用于土壤微生物群落的环境功能基因微阵列。

Development of an environmental functional gene microarray for soil microbial communities.

机构信息

School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.

出版信息

Appl Environ Microbiol. 2010 Nov;76(21):7161-70. doi: 10.1128/AEM.03108-09. Epub 2010 Sep 17.

Abstract

Functional attributes of microbial communities are difficult to study, and most current techniques rely on DNA- and rRNA-based profiling of taxa and genes, including microarrays containing sequences of known microorganisms. To quantify gene expression in environmental samples in a culture-independent manner, we constructed an environmental functional gene microarray (E-FGA) consisting of 13,056 mRNA-enriched anonymous microbial clones from diverse microbial communities to profile microbial gene transcripts. A new normalization method using internal spot standards was devised to overcome spotting and hybridization bias, enabling direct comparisons of microarrays. To evaluate potential applications of this metatranscriptomic approach for studying microbes in environmental samples, we tested the E-FGA by profiling the microbial activity of agricultural soils with a low or high flux of N₂O. A total of 109 genes displayed expression that differed significantly between soils with low and high N₂O emissions. We conclude that mRNA-based approaches such as the one presented here may complement existing techniques for assessing functional attributes of microbial communities.

摘要

微生物群落的功能属性很难研究,目前大多数技术都依赖于基于 DNA 和 rRNA 的分类群和基因分析,包括包含已知微生物序列的微阵列。为了在非培养的方式下定量环境样本中的基因表达,我们构建了一个由来自不同微生物群落的 13056 个富含 mRNA 的匿名微生物克隆组成的环境功能基因微阵列(E-FGA),以分析微生物基因转录本。我们设计了一种新的使用内部点标准的归一化方法,以克服点样和杂交偏倚,从而能够直接比较微阵列。为了评估这种宏转录组学方法在研究环境样品中微生物的潜在应用,我们通过对 N₂O 通量低或高的农业土壤中的微生物活性进行分析,测试了 E-FGA。共有 109 个基因的表达在低 N₂O 排放和高 N₂O 排放土壤之间存在显著差异。我们得出结论,基于 mRNA 的方法,如本文所述的方法,可能会补充现有的评估微生物群落功能属性的技术。

相似文献

1
Development of an environmental functional gene microarray for soil microbial communities.
Appl Environ Microbiol. 2010 Nov;76(21):7161-70. doi: 10.1128/AEM.03108-09. Epub 2010 Sep 17.
3
Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays.
Appl Environ Microbiol. 2001 Oct;67(10):4708-16. doi: 10.1128/AEM.67.10.4708-4716.2001.
4
Hybridization of genomic DNA to microarrays: a challenge for the analysis of environmental samples.
J Microbiol Methods. 2007 May;69(2):242-8. doi: 10.1016/j.mimet.2006.11.007. Epub 2006 Dec 26.
7
Microbial gene expression in soil: methods, applications and challenges.
J Microbiol Methods. 2005 Oct;63(1):1-19. doi: 10.1016/j.mimet.2005.03.007.
8
Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray.
Appl Microbiol Biotechnol. 2011 Jun;90(5):1739-54. doi: 10.1007/s00253-011-3268-5. Epub 2011 Apr 19.
10
Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.
Appl Microbiol Biotechnol. 2015 Oct;99(20):8751-64. doi: 10.1007/s00253-015-6748-1. Epub 2015 Jun 16.

引用本文的文献

1
Functional Prediction of Biological Profile During Eutrophication in Marine Environment.
Bioinform Biol Insights. 2022 Jan 5;16:11779322211063993. doi: 10.1177/11779322211063993. eCollection 2022.
2
Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning.
Front Microbiol. 2016 May 6;7:668. doi: 10.3389/fmicb.2016.00668. eCollection 2016.
4
Linking microbial community structure to β-glucosidic function in soil aggregates.
ISME J. 2013 Oct;7(10):2044-53. doi: 10.1038/ismej.2013.87. Epub 2013 May 30.
5
Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses.
Microbes Environ. 2012;27(4):456-61. doi: 10.1264/jsme2.me12076. Epub 2012 Sep 5.
6
Extraction of bacterial RNA from soil: challenges and solutions.
Microbes Environ. 2012;27(2):111-21. doi: 10.1264/jsme2.me11304.
7
Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments.
Microb Biotechnol. 2012 May;5(3):347-67. doi: 10.1111/j.1751-7915.2011.00313.x. Epub 2011 Nov 9.

本文引用的文献

1
Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics.
ISME J. 2010 Jul;4(7):896-907. doi: 10.1038/ismej.2010.18. Epub 2010 Mar 11.
2
Aerobic and anaerobic ammonia oxidizing bacteria--competitors or natural partners?
FEMS Microbiol Ecol. 2002 Mar 1;39(3):175-81. doi: 10.1111/j.1574-6941.2002.tb00920.x.
3
N2O emission hotspots at different spatial scales and governing factors for small scale hotspots.
Sci Total Environ. 2009 Mar 15;407(7):2325-32. doi: 10.1016/j.scitotenv.2008.11.010. Epub 2008 Dec 13.
5
Isolation and analysis of mRNA from environmental microbial communities.
J Microbiol Methods. 2008 Oct;75(2):172-6. doi: 10.1016/j.mimet.2008.05.019. Epub 2008 Jun 25.
7
Distantly sampled soils carry few species in common.
ISME J. 2008 Sep;2(9):901-10. doi: 10.1038/ismej.2008.55. Epub 2008 Jun 5.
8
Temporal transcriptomic microarray analysis of "Dehalococcoides ethenogenes" strain 195 during the transition into stationary phase.
Appl Environ Microbiol. 2008 May;74(9):2864-72. doi: 10.1128/AEM.02208-07. Epub 2008 Feb 29.
10
Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile.
Appl Environ Microbiol. 2008 Mar;74(5):1620-33. doi: 10.1128/AEM.01787-07. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验