Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14. doi: 10.1073/pnas.1005456107. Epub 2010 Sep 17.
As one of the most abundant polysaccharides on Earth, xylan will provide more than a third of the sugars for lignocellulosic biofuel production when using grass or hardwood feedstocks. Xylan is characterized by a linear β(1,4)-linked backbone of xylosyl residues substituted by glucuronic acid, 4-O-methylglucuronic acid or arabinose, depending on plant species and cell types. The biological role of these decorations is unclear, but they have a major influence on the properties of the polysaccharide. Despite the recent isolation of several mutants with reduced backbone, the mechanisms of xylan synthesis and substitution are unclear. We identified two Golgi-localized putative glycosyltransferases, GlucUronic acid substitution of Xylan (GUX)-1 and GUX2 that are required for the addition of both glucuronic acid and 4-O-methylglucuronic acid branches to xylan in Arabidopsis stem cell walls. The gux1 gux2 double mutants show loss of xylan glucuronyltransferase activity and lack almost all detectable xylan substitution. Unexpectedly, they show no change in xylan backbone quantity, indicating that backbone synthesis and substitution can be uncoupled. Although the stems are weakened, the xylem vessels are not collapsed, and the plants grow to normal size. The xylan in these plants shows improved extractability from the cell wall, is composed of a single monosaccharide, and requires fewer enzymes for complete hydrolysis. These findings have implications for our understanding of the synthesis and function of xylan in plants. The results also demonstrate the potential for manipulating and simplifying the structure of xylan to improve the properties of lignocellulose for bioenergy and other uses.
木聚糖作为地球上最丰富的多糖之一,当使用草类或硬木作为原料生产木质纤维素生物燃料时,它将提供超过三分之一的糖。木聚糖的特征是由木糖残基通过β(1,4)键连接形成的线性骨架,这些木糖残基被葡萄糖醛酸、4-O-甲基葡萄糖醛酸或阿拉伯糖取代,具体取代类型取决于植物种类和细胞类型。这些修饰物的生物学功能尚不清楚,但它们对多糖的性质有很大影响。尽管最近已经分离出几种具有减少的骨架的突变体,但木聚糖合成和取代的机制仍不清楚。我们鉴定了两种定位于高尔基体的假定糖基转移酶,GlucUronic acid substitution of Xylan (GUX)-1 和 GUX2,它们是在拟南芥干细胞壁中添加木聚糖的葡萄糖醛酸和 4-O-甲基葡萄糖醛酸侧链所必需的。gux1 gux2 双突变体显示出木聚糖葡萄糖醛酸基转移酶活性丧失,几乎检测不到任何木聚糖取代。出乎意料的是,它们的木聚糖骨架数量没有变化,这表明骨架合成和取代可以解偶联。尽管茎部变弱,但木质部导管没有塌陷,植物生长到正常大小。这些植物中的木聚糖从细胞壁中提取出来的可提取性提高,由单一的单糖组成,并且完全水解需要更少的酶。这些发现对我们理解木聚糖在植物中的合成和功能具有重要意义。研究结果还表明,有可能操纵和简化木聚糖的结构,以提高木质纤维素的性能,用于生物能源和其他用途。