Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.
Plant J. 2024 Oct;120(1):234-252. doi: 10.1111/tpj.16983. Epub 2024 Aug 15.
Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1). The function of AtXAPT1 was verified in planta by its T-DNA knockout mutation showing a loss of the Arap substitution on xylan GlcA side chains. Further biochemical characterization of XAPT close homologs from other plant species demonstrated that while the poplar ones had the same catalytic activity as AtXAPT1, those from Eucalyptus, lemon-scented gum, sea apple, 'Ohi'a lehua, duckweed and purple yam were capable of catalyzing both 2-O-Arap and 2-O-Gal substitutions of xylan GlcA side chains albeit with differential activities. Sequential reactions with XAPTs and glucuronoxylan methyltransferase 3 (GXM3) showed that XAPTs acted poorly on MeGlcA side chains, whereas GXM3 could efficiently methylate arabinosylated or galactosylated GlcA side chains of xylan. Furthermore, molecular docking and site-directed mutagenesis analyses of Eucalyptus XAPT1 revealed critical roles of several amino acid residues at the putative active site in its activity. Together, these findings establish that XAPTs residing in the MUR3 clade of family GT47 are responsible for 2-O-arabinopyranosylation and 2-O-galactosylation of GlcA side chains of xylan.
木聚糖是植物细胞壁中主要的半纤维素之一,其木糖基骨架在 O-2 位常常被葡萄糖醛酸(GlcA)和/或 4-O-甲基葡萄糖醛酸(MeGlcA)残基修饰。在一些植物物种中,GlcA/MeGlcA 侧链可能进一步被 2-O-阿拉伯吡喃糖基(Arap)或 2-O-半乳糖基(Gal)残基取代,但负责这些取代的酶仍不清楚。在研究拟南芥 MUR3 簇 GT47 糖基转移酶家族成员的酶活性时,我们发现其中一个能够将 Arap 从 UDP-Arap 转移到木聚糖 GlcA 侧链的 O-2 位,因此将其命名为木聚糖 2-O-阿拉伯吡喃糖基转移酶 1(AtXAPT1)。通过 T-DNA 敲除突变验证了 AtXAPT1 的功能,该突变导致木聚糖 GlcA 侧链上的 Arap 取代缺失。进一步对来自其他植物物种的 XAPT 近同源物的生化特性进行了表征,结果表明,尽管杨树的 XAPT 与 AtXAPT1 具有相同的催化活性,但来自桉树、柠檬桉、海苹果、‘Ohi'a lehua、浮萍和紫薯的 XAPT 能够催化木聚糖 GlcA 侧链的 2-O-Arap 和 2-O-Gal 取代,尽管活性不同。XAPTs 和木糖基阿拉伯呋喃糖苷甲基转移酶 3(GXM3)的连续反应表明,XAPTs 对 MeGlcA 侧链的作用较差,而 GXM3 能够有效地甲基化木聚糖 GlcA 侧链上的阿拉伯糖基化或半乳糖基化残基。此外,对桉树 XAPT1 的分子对接和定点突变分析表明,在假定的活性位点的几个氨基酸残基在其活性中起着关键作用。综上所述,这些发现表明,属于 GT47 家族 MUR3 簇的 XAPTs 负责木聚糖 GlcA 侧链的 2-O-阿拉伯吡喃糖基化和 2-O-半乳糖基化。