Suppr超能文献

沃森-克里克碱基配对和霍庚斯碱基配对对 C8-苯氧基-2'-脱氧鸟苷加合物构象稳定性的影响。

Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

机构信息

Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada, T1K 3M4.

出版信息

J Phys Chem B. 2010 Oct 14;114(40):12995-3004. doi: 10.1021/jp105817p.

Abstract

Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which implies that the anti orientation of the damaged base will be favored by hydrogen bonding in DNA helices. Additionally, regardless of the hydrogen-bonding face involved, cytosine forms the most stable base pair with the ortho adduct, which implies that misincorporation due to this type of damage is unlikely. Similarly, cytosine is the preferred binding partner for the Watson-Crick face of the para adduct. However, Hoogsteen interactions with the para adduct are stronger than those with natural 2'-deoxyguanosine or the ortho adduct, and this form of damage binds with nearly equal stability to both cytosine and guanine in the Hoogsteen orientation. Therefore, the para adduct may adopt multiple orientations in DNA helices and potentially cause mutations by forming pairs with different natural bases. Models of oligonucleotide duplexes must be used in future work to further evaluate other factors (stacking, major groove contacts) that may influence the conformation and binding preference of these adducts in DNA helices.

摘要

大体积 DNA 加合物(加合物)通过攻击鸟嘌呤的 C8 位点形成,可以通过糖苷键的顺式取向发生变化,这是由于直接来自大体积基团的构象稳定性或氢键偏好的变化。事实上,大取代基可能会提高(非天然)Hoogsteen 对的稳定性。因此,这种加合物在 DNA 复制时经常导致突变。这项工作研究了邻位或对位 C8-苯氧基-2'-脱氧鸟苷加合物与每个天然(未受损)核碱基之间的 Watson-Crick 和 Hoogsteen 面的氢键对,并旨在阐明这种类型的损伤的构象偏好,以及为随后的突变事件提供见解。使用加合物对的碱基和核苷模型以及涉及天然 2'-脱氧鸟苷的相应配合物,确定了 B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d)氢键强度。除了结合强度的大小外,还仔细比较了 R(C1'···C1')距离和 ∠(N9C1'C1')角度以及桨叶扭曲和扣环扭曲的程度,与天然 DNA 链中观察到的值进行比较。由于加合物单体中包含糖部分后的结构变化,单体变形能显著影响使用碱基和核苷模型计算的相对氢键强度。因此,我们建议至少使用核苷模型来准确评估涉及灵活、大体积碱基加合物的碱基对的氢键强度。我们的结果还强调了在预测核碱基的优先结合模式时,考虑氢键强度的大小和碱基对结构的重要性。使用我们的最佳模型,我们得出结论,邻位苯氧基加合物的 Watson-Crick 面形成的复合物比 Hoogsteen 面稳定得多,这意味着在 DNA 螺旋中氢键将有利于受损碱基的反式取向。此外,无论涉及哪种氢键结合面,胞嘧啶与邻位加合物形成最稳定的碱基对,这意味着由于这种类型的损伤而导致的错误掺入不太可能发生。同样,胞嘧啶是对位加合物 Watson-Crick 面的首选结合伴侣。然而,与天然 2'-脱氧鸟苷或邻位加合物相比,Hoogsteen 与对位加合物的相互作用更强,这种形式的损伤以几乎相等的稳定性与 Hoogsteen 取向的胞嘧啶和鸟嘌呤结合。因此,对位加合物可能在 DNA 螺旋中采用多种取向,并通过与不同的天然碱基形成对而潜在地导致突变。在未来的工作中,必须使用寡核苷酸双链体模型来进一步评估可能影响这些加合物在 DNA 螺旋中构象和结合偏好的其他因素(堆积、大沟接触)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验