The Rockefeller University, New York, New York, USA.
PLoS Biol. 2010 Sep 14;8(9):e1000483. doi: 10.1371/journal.pbio.1000483.
The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program.
从生化和遗传角度来看,大肠杆菌转录系统的特点最为明显,因此它一直是一个模型系统。然而,由于缺乏大肠杆菌 RNA 聚合酶(RNAP)的高分辨率结构信息,因此对大肠杆菌转录及其调控的分子细节的理解,以及对其作为模型系统的充分利用,一直受到阻碍。我们使用多种方法,包括高分辨率 X 射线晶体学、从头结构预测、同源建模和单颗粒冷冻电子显微镜,生成大肠杆菌核心 RNAP 和大肠杆菌 RNAP 三元延伸复合物的完整原子模型。详细而全面的结构描述可用于帮助以新的视角解释以前的生化和遗传数据,并为设计实验以了解大肠杆菌谱系特异性插入物的功能及其在大肠杆菌转录程序中的作用提供结构框架。