The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
Rapid Commun Mass Spectrom. 2010 Oct 15;24(19):2831-7. doi: 10.1002/rcm.4709.
Natural organic matter (NOM) occurs as an extremely complex mixture of large, charged molecules that are formed by secondary synthesis reactions. Due to their nature, their full characterization is an important challenge to scientists specializing in NOM as well as analytical chemistry. Ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis enables the identification of thousands of masses in a single measurement. A major challenge in the data analysis process of NOM using the FT-ICR MS technique is the need to sort the entire data set and to present it in an accessible mode. Here we present a simple targeted algorithm called the David Mass Sort (DMS) algorithm which facilitates the detection and counting of consecutive series of masses correlated to any selected mass spacing. This program searches for specific mass differences among all of the masses in a single spectrum against all of the masses in the same spectrum. As a representative case, the current study focuses on the analysis of the well-characterized Suwannee River humic and fulvic acid (SRHA and SRFA, respectively). By applying this algorithm, we were able to find and assess the amount of singly and doubly charged molecules. In addition we present the capabilities of the program to detect any series of consecutive masses correlated to specific mass spacing, e.g. COO, H(2), OCH(2) and O(2). Under several limitations, these mass spacings may be correlated to both chemical and biochemical changes which occur simultaneously during the formation and/or degradation of large mixtures of compounds.
天然有机物(NOM)是一种极其复杂的大分子混合物,是由二次合成反应形成的。由于其性质,对专门研究 NOM 和分析化学的科学家来说,对其进行全面表征是一项重要的挑战。超高效傅里叶变换离子回旋共振质谱(FT-ICR MS)分析能够在单次测量中识别数千个质量。使用 FT-ICR MS 技术分析 NOM 的数据分析过程中的一个主要挑战是需要对整个数据集进行分类,并以可访问的模式呈现。在这里,我们提出了一种简单的靶向算法,称为大卫质量排序(DMS)算法,该算法有助于检测和计数与任何选定质量间隔相关的连续质量系列。该程序在单个光谱中的所有质量之间以及在同一光谱中的所有质量之间搜索特定的质量差异。作为一个代表性的案例,本研究重点分析了具有良好特征的苏万尼河腐殖酸和富里酸(分别为 SRHA 和 SRFA)。通过应用该算法,我们能够找到并评估单电荷和双电荷分子的数量。此外,我们还展示了该程序检测任何与特定质量间隔相关的连续质量系列的能力,例如 COO、H(2)、OCH(2) 和 O(2)。在几个限制下,这些质量间隔可能与同时发生的大型化合物混合物的形成和/或降解过程中的化学和生化变化有关。