Suppr超能文献

基于微阵列数据的精确全基因组百分比 DNA 甲基化估计。

Accurate genome-scale percentage DNA methylation estimates from microarray data.

机构信息

Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231, USA.

出版信息

Biostatistics. 2011 Apr;12(2):197-210. doi: 10.1093/biostatistics/kxq055. Epub 2010 Sep 21.

Abstract

DNA methylation is a key regulator of gene function in a multitude of both normal and abnormal biological processes, but tools to elucidate its roles on a genome-wide scale are still in their infancy. Methylation sensitive restriction enzymes and microarrays provide a potential high-throughput, low-cost platform to allow methylation profiling. However, accurate absolute methylation estimates have been elusive due to systematic errors and unwanted variability. Previous microarray preprocessing procedures, mostly developed for expression arrays, fail to adequately normalize methylation-related data since they rely on key assumptions that are violated in the case of DNA methylation. We develop a normalization strategy tailored to DNA methylation data and an empirical Bayes percentage methylation estimator that together yield accurate absolute methylation estimates that can be compared across samples. We illustrate the method on data generated to detect methylation differences between tissues and between normal and tumor colon samples.

摘要

DNA 甲基化是许多正常和异常生物过程中基因功能的关键调节剂,但阐明其在全基因组范围内作用的工具仍处于起步阶段。甲基化敏感的限制性内切酶和微阵列为进行甲基化分析提供了一个潜在的高通量、低成本平台。然而,由于系统误差和不必要的可变性,准确的绝对甲基化估计仍然难以实现。先前的微阵列预处理程序主要是为表达阵列开发的,由于它们依赖于在 DNA 甲基化情况下被违反的关键假设,因此无法充分规范与甲基化相关的数据。我们开发了一种专门针对 DNA 甲基化数据的归一化策略和一个经验贝叶斯百分比甲基化估计器,它们共同产生可在样本之间进行比较的准确的绝对甲基化估计值。我们在为检测组织之间以及正常和肿瘤结肠样本之间的甲基化差异而生成的数据上说明了该方法。

相似文献

1
Accurate genome-scale percentage DNA methylation estimates from microarray data.
Biostatistics. 2011 Apr;12(2):197-210. doi: 10.1093/biostatistics/kxq055. Epub 2010 Sep 21.
2
Epigenomics: sequencing the methylome.
Methods Mol Biol. 2013;973:39-54. doi: 10.1007/978-1-62703-281-0_3.
3
High density DNA methylation array with single CpG site resolution.
Genomics. 2011 Oct;98(4):288-95. doi: 10.1016/j.ygeno.2011.07.007. Epub 2011 Aug 2.
5
Methylation Analysis Using Microarrays: Analysis and Interpretation.
Methods Mol Biol. 2019;1908:205-217. doi: 10.1007/978-1-4939-9004-7_14.
6
Genome-wide DNA methylation profiling using Infinium® assay.
Epigenomics. 2009 Oct;1(1):177-200. doi: 10.2217/epi.09.14.
8
Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis.
Epigenomics. 2015 Aug;7(5):813-28. doi: 10.2217/epi.15.21. Epub 2015 Sep 14.
9
DNA methylation estimation using methylation-sensitive restriction enzyme bisulfite sequencing (MREBS).
PLoS One. 2019 Apr 4;14(4):e0214368. doi: 10.1371/journal.pone.0214368. eCollection 2019.
10
DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA.
Methods. 2010 Nov;52(3):255-8. doi: 10.1016/j.ymeth.2010.06.017. Epub 2010 Jul 3.

引用本文的文献

1
Epigenetic changes in sperm are associated with paternal and child quantitative autistic traits in an autism-enriched cohort.
Mol Psychiatry. 2024 Jan;29(1):43-53. doi: 10.1038/s41380-023-02046-7. Epub 2023 Apr 27.
2
A High Epigenetic Risk Score Shapes the Non-Inflamed Tumor Microenvironment in Breast Cancer.
Front Mol Biosci. 2021 Jul 26;8:675198. doi: 10.3389/fmolb.2021.675198. eCollection 2021.
5
Novel biomarker revealed by integrating DNA methylation and mRNA expression data in non-obstructive azoospermia.
Cell Death Discov. 2018 Feb 26;4:36. doi: 10.1038/s41420-018-0033-x. eCollection 2018 Dec.
6
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Sci Rep. 2018 Feb 1;8(1):2190. doi: 10.1038/s41598-018-19655-w.
7
Integrated Analysis of DNA Methylation and mRNA Expression Profiles to Identify Key Genes in Severe Oligozoospermia.
Front Physiol. 2017 May 12;8:261. doi: 10.3389/fphys.2017.00261. eCollection 2017.
8
Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1678-E1687. doi: 10.1073/pnas.1615783114. Epub 2017 Feb 14.
10
Analysis of the interplay between methylation and expression reveals its potential role in cancer aetiology.
Funct Integr Genomics. 2017 Jan;17(1):53-68. doi: 10.1007/s10142-016-0533-9. Epub 2016 Nov 7.

本文引用的文献

1
Dynamic changes in the human methylome during differentiation.
Genome Res. 2010 Mar;20(3):320-31. doi: 10.1101/gr.101907.109. Epub 2010 Feb 4.
2
Why genes aren't destiny.
Time. 2010 Jan 18;175(2):48-53.
3
DNMT1 maintains progenitor function in self-renewing somatic tissue.
Nature. 2010 Jan 28;463(7280):563-7. doi: 10.1038/nature08683. Epub 2010 Jan 17.
4
Epigenomics: Methylation matters.
Nature. 2009 Nov 19;462(7271):296-7. doi: 10.1038/462296a.
5
Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature. 2009 Nov 19;462(7271):315-22. doi: 10.1038/nature08514. Epub 2009 Oct 14.
6
Epigenetics in cancer.
Carcinogenesis. 2010 Jan;31(1):27-36. doi: 10.1093/carcin/bgp220. Epub 2009 Sep 13.
9
A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis.
Nat Biotechnol. 2008 Jul;26(7):779-85. doi: 10.1038/nbt1414.
10
Genome-scale DNA methylation maps of pluripotent and differentiated cells.
Nature. 2008 Aug 7;454(7205):766-70. doi: 10.1038/nature07107. Epub 2008 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验