Suppr超能文献

三钙蛋白缺失骨骼肌中的钙离子超载和肌浆网不稳定。

Ca2+ overload and sarcoplasmic reticulum instability in tric-a null skeletal muscle.

机构信息

Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2010 Nov 26;285(48):37370-6. doi: 10.1074/jbc.M110.170084. Epub 2010 Sep 21.

Abstract

The sarcoplasmic reticulum (SR) of skeletal muscle contains K(+), Cl(-), and H(+) channels may facilitate charge neutralization during Ca(2+) release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca(2+) release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a(-/-) skeletal muscle showed Ca(2+) overload inside the SR with frequent formation of Ca(2+) deposits compared with the wild type muscle. This elevated SR Ca(2+) pool in the tric-a(-/-) muscle could be released by caffeine, whereas the elemental Ca(2+) release events, e.g. osmotic stress-induced Ca(2+) spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of "alternan" behavior with isolated tric-a(-/-) skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca(2+ ATPase) function could lead to aggravation of the stress-induced alternans in the tric-a(-/-) muscle. Our data suggests that absence of TRIC-A may lead to Ca(2+) overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca(2+) movement across the SR membrane. The observed alternan behavior with the tric-a(-/-) muscle may reflect a skeletal muscle version of store overload-induced Ca(2+) release that has been reported in the cardiac muscle under stress conditions.

摘要

骨骼肌的肌浆网 (SR) 含有 K(+)、Cl(-) 和 H(+) 通道,可能有助于在 Ca(2+) 释放过程中中和电荷。我们最近的研究表明,SR 上的三聚体细胞内阳离子 (TRIC) 通道是与细胞内储存的 Ca(2+) 快速释放相关的必需抗衡离子通透性途径。骨骼肌含有 TRIC-A 和 TRIC-B 同工型,分别为主要和次要成分。在这里,我们测试了 TRIC-A 在骨骼肌中的生理功能。生化测定显示,TRIC-A 的表达量相对骨骼肌兰尼碱受体丰富,TRIC-A/兰尼碱受体的摩尔比约为 5:1。用 tric-a(-/-)骨骼肌进行电子显微镜检查显示,与野生型肌肉相比,SR 内 Ca(2+) 超载,Ca(2+) 沉积频繁形成。在 tric-a(-/-)肌肉中,这种升高的 SR Ca(2+) 库可以被咖啡因释放,而基本的 Ca(2+) 释放事件,例如渗透胁迫诱导的 Ca(2+) 火花活动,则显著减少,可能反映了 SR 内抗衡离子运动受损。离体生理测试确定了 tric-a(-/-)骨骼肌出现“交替”行为,即在重复疲劳刺激过程中,收缩力下降时出现短暂而剧烈的收缩力增加。SR/内质网 Ca(2+)ATP 酶功能的抑制可能导致 tric-a(-/-)肌肉中应激诱导的交替加重。我们的数据表明,TRIC-A 的缺失可能导致 SR 内 Ca(2+) 超载,这与减少的抗衡离子运动相结合,可能导致 Ca(2+) 穿过 SR 膜的运动不稳定。在 tric-a(-/-)肌肉中观察到的交替行为可能反映了在应激条件下心肌中报道的储存超负荷诱导的 Ca(2+) 释放的骨骼肌版本。

相似文献

引用本文的文献

4
Zebrafish Tric-b is required for skeletal development and bone cells differentiation.斑马鱼 Tric-b 对于骨骼发育和骨细胞分化是必需的。
Front Endocrinol (Lausanne). 2023 Jan 23;14:1002914. doi: 10.3389/fendo.2023.1002914. eCollection 2023.
6
TRIC-A regulates intracellular Ca homeostasis in cardiomyocytes.TRIC-A 调节心肌细胞内的钙稳态。
Pflugers Arch. 2021 Mar;473(3):547-556. doi: 10.1007/s00424-021-02513-6. Epub 2021 Jan 21.

本文引用的文献

4
Cellular mechanisms of arrhythmogenic cardiac alternans.致心律失常性心脏交替的细胞机制。
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):332-47. doi: 10.1016/j.pbiomolbio.2008.02.014. Epub 2008 Feb 15.
9
Alternans of intracellular calcium: mechanism and significance.细胞内钙交替:机制与意义。
Heart Rhythm. 2006 Jun;3(6):743-5. doi: 10.1016/j.hrthm.2005.12.020. Epub 2006 Mar 6.
10
From pulsus to pulseless: the saga of cardiac alternans.从搏动到无脉:心脏交替脉的传奇故事。
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验