Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
J Biol Chem. 2010 Nov 26;285(48):37370-6. doi: 10.1074/jbc.M110.170084. Epub 2010 Sep 21.
The sarcoplasmic reticulum (SR) of skeletal muscle contains K(+), Cl(-), and H(+) channels may facilitate charge neutralization during Ca(2+) release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca(2+) release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a(-/-) skeletal muscle showed Ca(2+) overload inside the SR with frequent formation of Ca(2+) deposits compared with the wild type muscle. This elevated SR Ca(2+) pool in the tric-a(-/-) muscle could be released by caffeine, whereas the elemental Ca(2+) release events, e.g. osmotic stress-induced Ca(2+) spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of "alternan" behavior with isolated tric-a(-/-) skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca(2+ ATPase) function could lead to aggravation of the stress-induced alternans in the tric-a(-/-) muscle. Our data suggests that absence of TRIC-A may lead to Ca(2+) overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca(2+) movement across the SR membrane. The observed alternan behavior with the tric-a(-/-) muscle may reflect a skeletal muscle version of store overload-induced Ca(2+) release that has been reported in the cardiac muscle under stress conditions.
骨骼肌的肌浆网 (SR) 含有 K(+)、Cl(-) 和 H(+) 通道,可能有助于在 Ca(2+) 释放过程中中和电荷。我们最近的研究表明,SR 上的三聚体细胞内阳离子 (TRIC) 通道是与细胞内储存的 Ca(2+) 快速释放相关的必需抗衡离子通透性途径。骨骼肌含有 TRIC-A 和 TRIC-B 同工型,分别为主要和次要成分。在这里,我们测试了 TRIC-A 在骨骼肌中的生理功能。生化测定显示,TRIC-A 的表达量相对骨骼肌兰尼碱受体丰富,TRIC-A/兰尼碱受体的摩尔比约为 5:1。用 tric-a(-/-)骨骼肌进行电子显微镜检查显示,与野生型肌肉相比,SR 内 Ca(2+) 超载,Ca(2+) 沉积频繁形成。在 tric-a(-/-)肌肉中,这种升高的 SR Ca(2+) 库可以被咖啡因释放,而基本的 Ca(2+) 释放事件,例如渗透胁迫诱导的 Ca(2+) 火花活动,则显著减少,可能反映了 SR 内抗衡离子运动受损。离体生理测试确定了 tric-a(-/-)骨骼肌出现“交替”行为,即在重复疲劳刺激过程中,收缩力下降时出现短暂而剧烈的收缩力增加。SR/内质网 Ca(2+)ATP 酶功能的抑制可能导致 tric-a(-/-)肌肉中应激诱导的交替加重。我们的数据表明,TRIC-A 的缺失可能导致 SR 内 Ca(2+) 超载,这与减少的抗衡离子运动相结合,可能导致 Ca(2+) 穿过 SR 膜的运动不稳定。在 tric-a(-/-)肌肉中观察到的交替行为可能反映了在应激条件下心肌中报道的储存超负荷诱导的 Ca(2+) 释放的骨骼肌版本。