The hemocyanin of the freshwater snail, Marisa cornuarietis exists predominantly as a di-decamer with the approximate mol. wt of 8.5 x 10(6) and a sedimentation coefficient of 100 S. Sedimentation and scanning transmission electron microscopy experiments indicate that about 15-20% of the hemocyanin forms tri-decameric and possibly higher aggregates with mol. wts of 12.5 x 10(6) and 130 S. 2. The fully dissociated subunits in 8.0 M urea and 6.0 M GdmCl have mol. wts of 4.1 to 4.7 x 10(5) which is close to one-twentieth of the major di-decameric component of the native hemocyanin. 3. Subunit dissociation by the urea series and the Hofmeister salt series of reagents suggests hydrophobic stabilization of the decamers or half-molecules of the parent hemocyanin. As with the other molluscan hemocyanins the order of effectiveness of the ureas as dissociating agents shows increased efficacy with increasing hydrophobicity or chain-length of the urea substituents. 4. Denaturation of the hemocyanin subunits by the ureas and Hofmeister salt series, investigated by circular dichroism measurements, essentially follow the same trend in effectiveness as observed by changes in subunit dissociation followed by light-scattering mol. wt measurements. 5. The observed denaturation transitions are shifted to much higher ranges of reagent concentration than the concentrations required for the dissociation of the hemocyanin subunits.