Suppr超能文献

TorsinA 中的一个独特氧化还原感应传感器 II 基序在核苷酸和伴侣结合中发挥关键作用。

A unique redox-sensing sensor II motif in TorsinA plays a critical role in nucleotide and partner binding.

机构信息

Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Texas 75390, USA.

出版信息

J Biol Chem. 2010 Nov 26;285(48):37271-80. doi: 10.1074/jbc.M110.123471. Epub 2010 Sep 22.

Abstract

Early onset dystonia is commonly associated with the deletion of one of a pair of glutamate residues (ΔE302/303) near the C terminus of torsinA, a member of the AAA+ protein family (ATPases associated with a variety of cellular activities) located in the endoplasmic reticulum lumen. The functional consequences of the disease-causing mutation, ΔE, are not currently understood. By contrast to other AAA+ proteins, torsin proteins contain two conserved cysteine residues in the C-terminal domain, one of which is located in the nucleotide sensor II motif. Depending on redox status, an ATP hydrolysis mutant of torsinA interacts with lamina-associated polypeptide 1 (LAP1) and lumenal domain like LAP1 (LULL1). Substitution of the cysteine in sensor II diminishes the redox-regulated interaction of torsinA with these substrates. Significantly, the dystonia-causing mutation, ΔE, alters the ability of torsinA to mediate the redox-regulated interactions with LAP1 and LULL1. Limited proteolysis experiments reveal redox- and mutation-dependent changes in the local conformation of torsinA as a function of nucleotide binding. These results indicate that the cysteine-containing sensor II plays a critical role in redox sensing and the nucleotide and partner binding functions of torsinA and suggest that loss of this function of torsinA contributes to the development of DYT1 dystonia.

摘要

早发性肌张力障碍通常与位于内质网腔中的 AAA+ 蛋白家族(与各种细胞活动相关的 ATP 酶)成员 torsinA 的 C 末端附近一对谷氨酸残基(ΔE302/303)缺失有关。目前还不清楚导致疾病的突变(ΔE)的功能后果。与其他 AAA+ 蛋白不同,torsin 蛋白在 C 末端结构域中含有两个保守的半胱氨酸残基,其中一个位于核苷酸传感器 II 基序中。根据氧化还原状态,torsinA 的 ATP 水解突变体与层粘连蛋白相关多肽 1(LAP1)和腔域样 LAP1(LULL1)相互作用。传感器 II 中的半胱氨酸取代会降低 torsinA 与这些底物的氧化还原调节相互作用。重要的是,导致肌张力障碍的突变(ΔE)改变了 torsinA 介导与 LAP1 和 LULL1 的氧化还原调节相互作用的能力。有限的蛋白水解实验揭示了 torsinA 的局部构象随着核苷酸结合而发生氧化还原依赖性和突变依赖性变化。这些结果表明,含有半胱氨酸的传感器 II 在 torsinA 的氧化还原感应以及核苷酸和伴侣结合功能中起着关键作用,并表明 torsinA 的这种功能丧失导致 DYT1 肌张力障碍的发展。

相似文献

1
A unique redox-sensing sensor II motif in TorsinA plays a critical role in nucleotide and partner binding.
J Biol Chem. 2010 Nov 26;285(48):37271-80. doi: 10.1074/jbc.M110.123471. Epub 2010 Sep 22.
2
Interaction of torsinA with its major binding partners is impaired by the dystonia-associated DeltaGAG deletion.
J Biol Chem. 2009 Oct 9;284(41):27866-27874. doi: 10.1074/jbc.M109.020164. Epub 2009 Aug 3.
3
The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein.
J Cell Biol. 2005 Mar 14;168(6):855-62. doi: 10.1083/jcb.200411026.
4
Regulation of Torsin ATPases by LAP1 and LULL1.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1545-54. doi: 10.1073/pnas.1300676110. Epub 2013 Apr 8.
8
Dynamic functional assembly of the Torsin AAA+ ATPase and its modulation by LAP1.
Mol Biol Cell. 2017 Oct 15;28(21):2765-2772. doi: 10.1091/mbc.E17-05-0281. Epub 2017 Aug 16.
9
How lamina-associated polypeptide 1 (LAP1) activates Torsin.
Elife. 2014 Aug 22;3:e03239. doi: 10.7554/eLife.03239.
10
Torsin ATPases: structural insights and functional perspectives.
Curr Opin Cell Biol. 2016 Jun;40:1-7. doi: 10.1016/j.ceb.2016.01.001. Epub 2016 Jan 21.

引用本文的文献

1
Dynamic regulation of hepatic lipid metabolism by torsinA and its activators.
JCI Insight. 2024 Feb 8;9(3):e175328. doi: 10.1172/jci.insight.175328.
2
DYT- dystonia: an update on pathogenesis and treatment.
Front Neurosci. 2023 Aug 10;17:1216929. doi: 10.3389/fnins.2023.1216929. eCollection 2023.
3
Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope.
Life Sci Alliance. 2023 Jul 11;6(9). doi: 10.26508/lsa.202301998. Print 2023 Sep.
4
-Associated Nuclear Envelopathies.
Int J Mol Sci. 2023 Apr 7;24(8):6911. doi: 10.3390/ijms24086911.
6
Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope.
bioRxiv. 2023 Feb 14:2023.02.13.528342. doi: 10.1101/2023.02.13.528342.
7
The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.
Brain. 2023 Aug 1;146(8):3273-3288. doi: 10.1093/brain/awad039.
8
TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis.
Biochim Biophys Acta Mol Cell Res. 2021 Aug;1868(9):119073. doi: 10.1016/j.bbamcr.2021.119073. Epub 2021 May 29.
9
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function.
Mol Ther Nucleic Acids. 2020 Sep 4;21:1-12. doi: 10.1016/j.omtn.2020.05.009. Epub 2020 May 15.

本文引用的文献

1
A molecular mechanism underlying the neural-specific defect in torsinA mutant mice.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9861-6. doi: 10.1073/pnas.0912877107. Epub 2010 May 10.
2
Interaction of torsinA with its major binding partners is impaired by the dystonia-associated DeltaGAG deletion.
J Biol Chem. 2009 Oct 9;284(41):27866-27874. doi: 10.1074/jbc.M109.020164. Epub 2009 Aug 3.
3
LULL1 retargets TorsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation.
Mol Biol Cell. 2009 Jun;20(11):2661-72. doi: 10.1091/mbc.e09-01-0094. Epub 2009 Apr 1.
4
Hsp104 and ClpB: protein disaggregating machines.
Trends Biochem Sci. 2009 Jan;34(1):40-8. doi: 10.1016/j.tibs.2008.09.010. Epub 2008 Nov 12.
5
TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton.
J Cell Sci. 2008 Oct 15;121(Pt 20):3476-86. doi: 10.1242/jcs.029454. Epub 2008 Sep 30.
8
Commentary: Dopaminergic dysfunction in DYT1 dystonia.
Exp Neurol. 2008 Aug;212(2):242-6. doi: 10.1016/j.expneurol.2008.04.020. Epub 2008 Apr 26.
9
Abnormal motor function and dopamine neurotransmission in DYT1 DeltaGAG transgenic mice.
Exp Neurol. 2008 Apr;210(2):719-30. doi: 10.1016/j.expneurol.2007.12.027. Epub 2008 Jan 19.
10
The pathophysiological basis of dystonias.
Nat Rev Neurosci. 2008 Mar;9(3):222-34. doi: 10.1038/nrn2337.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验