Neuropsychology and Neurorehabilitation Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland.
J Neurosci. 2010 Sep 22;30(38):12572-80. doi: 10.1523/JNEUROSCI.1099-10.2010.
Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.
当前的大脑组织模型包括早期处理阶段和低级别的多感官相互作用,包括初级皮层。在人类的视听(AV)相互作用方面,接受这种模型仍然存在问题。对于事件相关电位(ERP)的分析,应用加性模型存在争议,传统的 ERP 分析方法产生了不一致的效应潜伏期,并允许有限的神经生理可解释性。虽然血流动力学成像和经颅磁刺激研究为上述模型提供了普遍支持,但精确的时间、超加法/减法方向性、地形稳定性和来源仍未解决。我们在人类中记录了注意到的 ERP,但与任务无关的刺激不需要明显的运动反应,从而避免了范例上的警告。我们应用了新的 ERP 信号分析方法,提供了有关视听相互作用可能基础的详细信息。首先,非线性相互作用发生在刺激后 60-95 毫秒,是 ERP 中地形而不是纯强度调制的结果。视听刺激涉及到颅内发生器的不同配置,而不仅仅是调制单感觉反应的幅度。其次,源估计(及其统计分析)确定了初级视觉、初级听觉和后上颞叶区域作为介导这些效应的区域。最后,所有这些区域的电流密度标量值都表现出功能耦合的、次加法的非线性效应,这种模式越来越符合非人类灵长类动物的越来越多的证据。通过这些方式,我们展示了如何在人类中无创地识别多感官相互作用的神经生理基础,从而一方面可以在成像方法之间进行综合,另一方面可以在物种之间进行综合。