Suppr超能文献

人类的视听多感觉相互作用:时间、拓扑、方向和来源。

Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources.

机构信息

Neuropsychology and Neurorehabilitation Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland.

出版信息

J Neurosci. 2010 Sep 22;30(38):12572-80. doi: 10.1523/JNEUROSCI.1099-10.2010.

Abstract

Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.

摘要

当前的大脑组织模型包括早期处理阶段和低级别的多感官相互作用,包括初级皮层。在人类的视听(AV)相互作用方面,接受这种模型仍然存在问题。对于事件相关电位(ERP)的分析,应用加性模型存在争议,传统的 ERP 分析方法产生了不一致的效应潜伏期,并允许有限的神经生理可解释性。虽然血流动力学成像和经颅磁刺激研究为上述模型提供了普遍支持,但精确的时间、超加法/减法方向性、地形稳定性和来源仍未解决。我们在人类中记录了注意到的 ERP,但与任务无关的刺激不需要明显的运动反应,从而避免了范例上的警告。我们应用了新的 ERP 信号分析方法,提供了有关视听相互作用可能基础的详细信息。首先,非线性相互作用发生在刺激后 60-95 毫秒,是 ERP 中地形而不是纯强度调制的结果。视听刺激涉及到颅内发生器的不同配置,而不仅仅是调制单感觉反应的幅度。其次,源估计(及其统计分析)确定了初级视觉、初级听觉和后上颞叶区域作为介导这些效应的区域。最后,所有这些区域的电流密度标量值都表现出功能耦合的、次加法的非线性效应,这种模式越来越符合非人类灵长类动物的越来越多的证据。通过这些方式,我们展示了如何在人类中无创地识别多感官相互作用的神经生理基础,从而一方面可以在成像方法之间进行综合,另一方面可以在物种之间进行综合。

相似文献

1
Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources.
J Neurosci. 2010 Sep 22;30(38):12572-80. doi: 10.1523/JNEUROSCI.1099-10.2010.
2
Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study.
Brain Res Cogn Brain Res. 2002 Jun;14(1):115-28. doi: 10.1016/s0926-6410(02)00066-6.
3
Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli.
Exp Brain Res. 2009 Sep;198(2-3):313-28. doi: 10.1007/s00221-009-1858-6. Epub 2009 Jun 4.
4
Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness.
Neuroimage. 2011 Jun 15;56(4):2200-8. doi: 10.1016/j.neuroimage.2011.03.075. Epub 2011 Apr 8.
5
Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging.
Neuroimage. 2004 Jan;21(1):125-35. doi: 10.1016/j.neuroimage.2003.09.035.
7
Looming signals reveal synergistic principles of multisensory integration.
J Neurosci. 2012 Jan 25;32(4):1171-82. doi: 10.1523/JNEUROSCI.5517-11.2012.
8
Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech.
Brain Topogr. 2012 Jul;25(3):308-26. doi: 10.1007/s10548-012-0220-7. Epub 2012 Feb 25.
9
Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations.
Neuropsychologia. 2007 Feb 1;45(3):561-71. doi: 10.1016/j.neuropsychologia.2006.01.013. Epub 2006 Mar 20.

引用本文的文献

1
Assessing the reliability of an online measure of the temporal binding window of audiovisual integration.
Behav Res Methods. 2025 Aug 18;57(9):261. doi: 10.3758/s13428-025-02791-3.
2
Effects of visual spatial frequency on audiovisual interaction: an event-related potential study.
Front Neurosci. 2025 May 19;19:1599114. doi: 10.3389/fnins.2025.1599114. eCollection 2025.
3
Neural processing of naturalistic audiovisual events in space and time.
Commun Biol. 2025 Jan 22;8(1):110. doi: 10.1038/s42003-024-07434-5.
4
Onset timing of letter processing in auditory and visual sensory cortices.
Front Integr Neurosci. 2024 Nov 14;18:1427149. doi: 10.3389/fnint.2024.1427149. eCollection 2024.
5
Attentional demands in the visual field modulate audiovisual interactions in the temporal domain.
Hum Brain Mapp. 2024 Aug 15;45(12):e70009. doi: 10.1002/hbm.70009.
6
Visual modulation of auditory evoked potentials in the cat.
Sci Rep. 2024 Mar 26;14(1):7177. doi: 10.1038/s41598-024-57075-1.
7
Multisensory integration augmenting motor processes among older adults.
Front Aging Neurosci. 2023 Dec 20;15:1293479. doi: 10.3389/fnagi.2023.1293479. eCollection 2023.
8
The effects of attention in auditory-visual integration revealed by time-varying networks.
Front Neurosci. 2023 Aug 2;17:1235480. doi: 10.3389/fnins.2023.1235480. eCollection 2023.
9
Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space.
iScience. 2022 Dec 26;26(1):105879. doi: 10.1016/j.isci.2022.105879. eCollection 2023 Jan 20.
10
Electrophysiological differences and similarities in audiovisual speech processing in CI users with unilateral and bilateral hearing loss.
Curr Res Neurobiol. 2022 Nov 8;3:100059. doi: 10.1016/j.crneur.2022.100059. eCollection 2022.

本文引用的文献

1
Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices.
Eur J Neurosci. 2010 May;31(10):1772-82. doi: 10.1111/j.1460-9568.2010.07213.x.
2
The behavioral relevance of multisensory neural response interactions.
Front Neurosci. 2010 May 15;4:9. doi: 10.3389/neuro.01.009.2010. eCollection 2010.
3
Multisensory facilitation of behavior in monkeys: effects of stimulus intensity.
J Cogn Neurosci. 2010 Dec;22(12):2850-63. doi: 10.1162/jocn.2010.21423.
4
The leading sense: supramodal control of neurophysiological context by attention.
Neuron. 2009 Nov 12;64(3):419-30. doi: 10.1016/j.neuron.2009.10.014.
5
Adaptive tracking of EEG oscillations.
J Neurosci Methods. 2010 Jan 30;186(1):97-106. doi: 10.1016/j.jneumeth.2009.10.018. Epub 2009 Nov 3.
6
Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey.
Cereb Cortex. 2010 Jul;20(7):1529-38. doi: 10.1093/cercor/bhp213. Epub 2009 Oct 29.
7
Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds.
Curr Biol. 2009 Nov 17;19(21):1799-805. doi: 10.1016/j.cub.2009.09.027. Epub 2009 Oct 15.
8
Spatial organization of multisensory responses in temporal association cortex.
J Neurosci. 2009 Sep 23;29(38):11924-32. doi: 10.1523/JNEUROSCI.3437-09.2009.
9
Multisensory integration: psychophysics, neurophysiology, and computation.
Curr Opin Neurobiol. 2009 Aug;19(4):452-8. doi: 10.1016/j.conb.2009.06.008. Epub 2009 Jul 16.
10
Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex.
Hear Res. 2009 Dec;258(1-2):72-9. doi: 10.1016/j.heares.2009.06.018. Epub 2009 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验