Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
J Neurosci. 2010 Sep 22;30(38):12712-24. doi: 10.1523/JNEUROSCI.6365-09.2010.
The pitch of harmonic complex tones plays an important role in speech and music perception and the analysis of auditory scenes, yet traditional rate-place and temporal models for pitch processing provide only an incomplete description of the psychophysical data. To test physiologically a model based on spatiotemporal pitch cues created by the cochlear traveling wave (Shamma, 1985), we recorded from single fibers in the auditory nerve of anesthetized cat in response to harmonic complex tones with missing fundamentals and equal-amplitude harmonics. We used the principle of scaling invariance in cochlear mechanics to infer the spatiotemporal response pattern to a given stimulus from a series of measurements made in a single fiber as a function of fundamental frequency F0. We found that spatiotemporal cues to resolved harmonics are available for F0 values between 350 and 1100 Hz and that these cues are more robust than traditional rate-place cues at high stimulus levels. The lower F0 limit is determined by the limited frequency selectivity of the cochlea, whereas the upper limit is caused by the degradation of phase locking to the stimulus fine structure at high frequencies. The spatiotemporal representation is consistent with the upper F0 limit to the perception of the pitch of complex tones with a missing fundamental, and its effectiveness does not depend on the relative phase between resolved harmonics. The spatiotemporal representation is thus consistent with key trends in human psychophysics.
复音谐音的音高在言语和音乐感知以及听觉场景分析中起着重要作用,但传统的音高处理率-位和时距模型仅对心理物理数据提供了不完全的描述。为了在生理上测试基于耳蜗行波产生的时空音高线索的模型(Shamma,1985),我们在麻醉猫的听神经中记录了对缺失基频和等幅谐音的复音谐音的单纤维反应。我们利用耳蜗力学中的标度不变性原理,从单根纤维作为基频 F0 的函数进行的一系列测量中推断出给定刺激的时空响应模式。我们发现,对于 350 到 1100 Hz 之间的 F0 值,可分辨谐音的时空线索可用,并且这些线索在高刺激水平下比传统的率-位线索更稳健。较低的 F0 限制由耳蜗的有限频率选择性决定,而较高的限制则由高频时对刺激精细结构的锁相的退化引起。时空表示与缺失基频的复音谐音音高感知的上 F0 限制一致,其有效性不依赖于可分辨谐音之间的相对相位。因此,时空表示与人类心理物理学的关键趋势一致。