Suppr超能文献

Characterization and comparison of poly(adenosine dephosphoribose) synthesis and DNA synthesis in nucleotide-permeable cells.

作者信息

Berger N A, Weber G, Kaichi A S

出版信息

Biochim Biophys Acta. 1978 Jun 22;519(1):87-104. doi: 10.1016/0005-2787(78)90064-3.

Abstract

Using eukaryotic cells that have been rendered permeable to exogenously supplied nucleotides, we have characterized the activity of the poly(adenosine diphosphoribose) (poly(ADPR)) synthesis system and compared it to the DNA synthesis complex. The synthesis of poly(ADPR) is dependent on the presence of NAD and Mg2+. It does not require ATP, NaF or a monovalent cation. It is inhibited by N-ethylmaleimide. The reaction product conforms to the nuclease susceptibilities expected for poly(ADP ribose) in that it is degraded by venom phosphodiesterase but not by DNAase of RNAase. A comparison of the effects of inhibitors of poly(ADPR) synthesis and DNA synthesis clearly distinguishes between the two enzymatic systems. Nicotinamide, 5-methyl nicotinamide, thymidine, 5-bromo deoxyuridine, adenosine diphosphoribose, caffeine and formycin all inhibit poly(ADPR) synthesis but not DNA synthesis. In contrast, araCTP, cytembena and phosphonoacetic acid all inhibit DNA synthesis but not poly(ADPR) synthesis. Addition of DNAase to the permeable cells causes a marked stimulation of poly(ADPR) synthesis. L cells in logarithmic growth were found to have high levels of activity of the DNA synthesis complex and low levels of activity of the poly(ADPR) synthesis system. In contrast, cells at plateau phase density demonstrate a decrease in the activity of the DNA synthesis complex and a marked increase in activity of the poly(ADPR) synthesis system. When examined in the presence of added DNAase, the activity of the poly(ADPR) synthesis system is the same in cells obtained from log or plateau phase cultures. This indicates that the physiologic activity of the enzyme varies while the total amount of enzyme remains constant. When the permeable cells are allowed to synthesize both poly(ADPR) and DNA simultaneously, the synthesis of one polymer has no effect on the rate of synthesis of the other.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验