Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, USA.
J Neurophysiol. 2010 Dec;104(6):3345-60. doi: 10.1152/jn.00398.2010. Epub 2010 Sep 22.
Astrocytic inwardly rectifying K(+) currents (I(KIR)) have an important role in extracellular K(+) homeostasis, which influences neuronal excitability, and serum extravasation has been linked to impaired K(IR)-mediated K(+) buffering and chronic hyperexcitability. Head injury induces acute impairment in astroglial membrane I(KIR) and impaired K(+) buffering in the rat hippocampus, but chronic spontaneous seizures appear in the perilesional neocortex--not the hippocampus--in the early weeks to months after injury. Thus we examined astrocytic K(IR) channel pathophysiology in both neocortex and hippocampus after rostral parasaggital fluid percussion injury (rpFPI). rpFPI induced greater acute serum extravasation and metabolic impairment in the perilesional neocortex than in the underlying hippocampus, and in situ whole cell recordings showed a greater acute loss of astrocytic I(KIR) in neocortex than hippocampus. I(KIR) loss persisted through 1 mo after injury only in the neocortical epileptic focus, but fully recovered in the hippocampus that did not generate chronic seizures. Neocortical cell-attached recordings showed no loss or an increase of I(KIR) in astrocytic somata. Confocal imaging showed depletion of KIR4.1 immunoreactivity especially in processes--not somata--of neocortical astrocytes, whereas hippocampal astrocytes appeared normal. In naïve animals, intracortical infusion of serum, devoid of coagulation-mediating thrombin activity, reproduces the effects of rpFPI both in vivo and at the cellular level. In vivo serum infusion induces partial seizures similar to those induced by rpFPI, whereas bath-applied serum, but not dialyzed albumin, rapidly silenced astrocytic K(IR) membrane currents in whole cell and cell-attached patch-clamp recordings in situ. Thus both acute impairment in astrocytic I(KIR) and chronic spontaneous seizures typical of rpFPI are reproduced by serum extravasation, whereas the chronic impairment in astroglial I(KIR) is specific to the neocortex that develops the epileptic focus.
星形细胞内向整流钾电流 (I(KIR)) 在细胞外钾离子稳态中起着重要作用,它影响神经元兴奋性,而血清外渗与受损的 KIR 介导的钾缓冲和慢性过度兴奋有关。头部损伤会导致大鼠海马体星形胶质细胞膜 I(KIR) 的急性损伤和钾缓冲受损,但在损伤后数周到数月的早期,病变周围的新皮层而非海马体出现慢性自发性癫痫发作。因此,我们研究了 rostral parasaggital 流体冲击伤(rpFPI)后新皮层和海马体中星形胶质细胞 KIR 通道的病理生理学。rpFPI 导致病变周围新皮层的急性血清外渗和代谢损伤比其下的海马体更严重,原位全细胞膜片钳记录显示新皮层的星形胶质细胞 I(KIR) 急性损失大于海马体。损伤后 1 个月内,只有在新皮层癫痫灶中 I(KIR) 持续丢失,但在不产生慢性癫痫发作的海马体中完全恢复。新皮层细胞附着记录显示星形胶质细胞体中 I(KIR) 没有丢失或增加。共聚焦成像显示 KIR4.1 免疫反应性耗竭,特别是在新皮层星形胶质细胞的突起中,而海马体星形胶质细胞似乎正常。在未受伤的动物中,皮质内输注缺乏凝血介导的凝血酶活性的血清,在体内和细胞水平上重现了 rpFPI 的作用。体内血清输注诱导类似于 rpFPI 诱导的部分性癫痫发作,而灌流应用的血清而非透析白蛋白可迅速沉默原位全细胞膜片钳和细胞附着式膜片钳记录中的星形胶质细胞 KIR 膜电流。因此,rpFPI 典型的急性星形细胞 I(KIR)损伤和慢性自发性癫痫发作均可由血清外渗引起,而星形胶质细胞 I(KIR)的慢性损伤则是新皮层形成癫痫灶所特有的。