Suppr超能文献

城市雨水微生物模型的敏感性分析。

Sensitivity analysis of an urban stormwater microorganism model.

机构信息

Department of Civil Engineering & Centre for Water Sensitive Cities, Monash University, Wellington Rd, Clayton Vic 3800, Australia.

出版信息

Water Sci Technol. 2010;62(6):1393-400. doi: 10.2166/wst.2010.349.

Abstract

This paper presents the sensitivity analysis of a newly developed model which predicts microorganism concentrations in urban stormwater (MOPUS--MicroOrganism Prediction in Urban Stormwater). The analysis used Escherichia coli data collected from four urban catchments in Melbourne, Australia. The MICA program (Model Independent Markov Chain Monte Carlo Analysis), used to conduct this analysis, applies a carefully constructed Markov Chain Monte Carlo procedure, based on the Metropolis-Hastings algorithm, to explore the model's posterior parameter distribution. It was determined that the majority of parameters in the MOPUS model were well defined, with the data from the MCMC procedure indicating that the parameters were largely independent. However, a sporadic correlation found between two parameters indicates that some improvements may be possible in the MOPUS model. This paper identifies the parameters which are the most important during model calibration; it was shown, for example, that parameters associated with the deposition of microorganisms in the catchment were more influential than those related to microorganism survival processes. These findings will help users calibrate the MOPUS model, and will help the model developer to improve the model, with efforts currently being made to reduce the number of model parameters, whilst also reducing the slight interaction identified.

摘要

本文对新开发的城市雨水微生物预测模型(MOPUS--MicroOrganism Prediction in Urban Stormwater)进行了敏感性分析。该分析使用了从澳大利亚墨尔本四个城市集水区收集的大肠杆菌数据。用于进行此分析的 MICA 程序(Model Independent Markov Chain Monte Carlo Analysis)采用了一种精心构建的马尔可夫链蒙特卡罗程序,基于 Metropolis-Hastings 算法,以探索模型的后验参数分布。结果表明,MOPUS 模型中的大多数参数定义明确,MCMC 程序中的数据表明参数在很大程度上是独立的。然而,发现两个参数之间存在零星相关性,表明 MOPUS 模型可能需要进一步改进。本文确定了模型校准过程中最重要的参数;例如,结果表明,与微生物在集水区中沉积相关的参数比与微生物存活过程相关的参数更具影响力。这些发现将帮助用户校准 MOPUS 模型,并帮助模型开发者改进模型,目前正在努力减少模型参数的数量,同时减少已识别的轻微相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验