Suppr超能文献

高通量双分子荧光互补蛋白-蛋白相互作用筛选鉴定功能型拟南芥 CDK/A/B-CYCD4/5 复合物。

A high-throughput bimolecular fluorescence complementation protein-protein interaction screen identifies functional Arabidopsis CDKA/B-CYCD4/5 complexes.

机构信息

Department of Plant Systems Biology, VIB, Ghent University, Gent, Belgium.

出版信息

Plant Signal Behav. 2010 Oct;5(10):1276-81. doi: 10.4161/psb.5.10.13037. Epub 2010 Oct 1.

Abstract

The eukaryotic cell cycle is a process controlled by protein assemblies, of which the key subunits are serine-threonine cyclin-dependent kinases (CDKs). Timely association and dissociation of these assemblies ensure that the cell division program is executed correctly. The challenge to unravel the rules of the plant cell cycle results from the multiplicity of the process-regulating genes that emerged through genome duplications during the evolution of flowering plants. Despite the increasing knowledge on the plant cell cycle control, little is known about the composition of the different CDK-Cyclin complexes and their spatio-temporal occurrence. The binary interactions of the previously annotated 58 Arabidopsis thaliana core cell cycle proteins were tested in two high-throughput protein-protein interaction (PPI) assays: the bimolecular fluorescence complementation (BiFC) and the yeast two-hybrid. The resulting PPI network was integrated with available cycle phase-dependent gene expression data and subcellular localization information, revealing distinct cell cycle clusters acting at different cell division stages. Additionally, the BiFC assay revealed that three D-type cyclins, CYCD4;1, CYCD4;2 and CYCD5;1, form active kinase complexes with CDKA;1 and CDKB1;1 in vivo because they induce cell divisions in differentiated tobacco (Nicotiana benthamiana) epidermal cells. We demonstrate that these complexes promote cell proliferation in Arabidopsis and we discuss their putative mode of action in plant development.

摘要

真核细胞周期是一个由蛋白质组装体控制的过程,其中关键的亚基是丝氨酸/苏氨酸细胞周期蛋白依赖性激酶(CDK)。这些组装体的适时结合和解离确保了细胞分裂程序被正确执行。由于在有花植物进化过程中基因组加倍导致了调控细胞周期的基因多样性,因此揭示植物细胞周期调控的规则是一个挑战。尽管人们对植物细胞周期调控的了解越来越多,但对于不同的 CDK-周期蛋白复合物的组成及其时空发生仍知之甚少。通过两种高通量蛋白质-蛋白质相互作用(PPI)测定法——双分子荧光互补(BiFC)和酵母双杂交,测试了先前注释的 58 个拟南芥核心细胞周期蛋白的二元相互作用。将所得的 PPI 网络与可用的周期相关基因表达数据和亚细胞定位信息集成,揭示了在不同细胞分裂阶段起作用的不同细胞周期簇。此外,BiFC 测定法表明,三种 D 型细胞周期蛋白 CYCD4;1、CYCD4;2 和 CYCD5;1 在体内与 CDKA;1 和 CDKB1;1 形成活性激酶复合物,因为它们在分化的烟草(Nicotiana benthamiana)表皮细胞中诱导细胞分裂。我们证明这些复合物在拟南芥中促进细胞增殖,并讨论了它们在植物发育中的潜在作用模式。

相似文献

2
Arabidopsis D-type cyclin CYCD4;1 is a novel cyclin partner of B2-type cyclin-dependent kinase.
Plant Physiol. 2003 Jul;132(3):1315-21. doi: 10.1104/pp.103.020644.
4
Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network.
Plant Cell. 2010 Apr;22(4):1264-80. doi: 10.1105/tpc.109.073635. Epub 2010 Apr 20.
5
The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis.
Plant Cell. 2007 Apr;19(4):1265-77. doi: 10.1105/tpc.106.046763. Epub 2007 Apr 20.
7
A distinct type of cyclin D, CYCD4;2, involved in the activation of cell division in Arabidopsis.
Plant Cell Rep. 2006 Jun;25(6):540-5. doi: 10.1007/s00299-005-0075-4. Epub 2006 Jan 12.

引用本文的文献

3
The Role of Grass Orthologs in GMC Progression and GC Morphogenesis.
Front Plant Sci. 2021 Jun 24;12:678417. doi: 10.3389/fpls.2021.678417. eCollection 2021.
4
The CDK Inhibitor SIAMESE Targets Both CDKA;1 and CDKB1 Complexes to Establish Endoreplication in Trichomes.
Plant Physiol. 2020 Sep;184(1):165-175. doi: 10.1104/pp.20.00271. Epub 2020 Jul 21.
5
Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities.
3 Biotech. 2018 Nov;8(11):454. doi: 10.1007/s13205-018-1473-y. Epub 2018 Oct 19.
6
Techniques for the Analysis of Protein-Protein Interactions in Vivo.
Plant Physiol. 2016 Jun;171(2):727-58. doi: 10.1104/pp.16.00470. Epub 2016 Apr 25.
7
The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks.
PLoS One. 2015 Oct 9;10(10):e0139884. doi: 10.1371/journal.pone.0139884. eCollection 2015.
8
A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.
PLoS Comput Biol. 2015 Sep 4;11(9):e1004486. doi: 10.1371/journal.pcbi.1004486. eCollection 2015 Sep.
9
Subcellular functions of proteins under fluorescence single-cell microscopy.
Biochim Biophys Acta. 2016 Jan;1864(1):77-84. doi: 10.1016/j.bbapap.2015.05.014. Epub 2015 May 27.

本文引用的文献

1
Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network.
Plant Cell. 2010 Apr;22(4):1264-80. doi: 10.1105/tpc.109.073635. Epub 2010 Apr 20.
2
The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22528-33. doi: 10.1073/pnas.0906354106. Epub 2009 Dec 15.
3
Cell cycle, CDKs and cancer: a changing paradigm.
Nat Rev Cancer. 2009 Mar;9(3):153-66. doi: 10.1038/nrc2602.
4
Classification of chromosome segregation errors in cancer.
Chromosoma. 2008 Dec;117(6):511-9. doi: 10.1007/s00412-008-0169-1. Epub 2008 Jun 6.
5
The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis.
Plant Cell. 2007 Apr;19(4):1265-77. doi: 10.1105/tpc.106.046763. Epub 2007 Apr 20.
6
Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation.
Curr Biol. 2007 Apr 17;17(8):678-82. doi: 10.1016/j.cub.2007.02.047. Epub 2007 Mar 15.
7
Dynamic complex formation during the yeast cell cycle.
Science. 2005 Feb 4;307(5710):724-7. doi: 10.1126/science.1105103.
9
The plant cell cycle.
Annu Rev Plant Biol. 2003;54:235-64. doi: 10.1146/annurev.arplant.54.031902.134836.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验