Physics Faculty, St. Petersburg State University, Uljanovskaja ul.1, St. Petersburg 198504, Russia.
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Aug 15;79(4):708-11. doi: 10.1016/j.saa.2010.08.042. Epub 2010 Sep 21.
The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces.
本文报告了 5-10nm 厚的铜酞菁(CuPc)共轭层与多种固体表面的界面形成的结果:多晶金、(SiO2)n-Si、ZnO(0001)、Si(100)、Ge(111)、CdS(0001)和 GaAs(100)。这些结果是使用俄歇电子能谱(AES)和低能靶电流电子能谱(TCS)获得的。有机覆盖层是在 UHV 中通过热蒸发原位沉积在衬底表面上的。岛状有机沉积物被排除在分析之外,因此只考虑了均匀的有机沉积物。在多晶金、Si(100)和 Ge(111)衬底的情况下,随着 CuPc 薄膜厚度增加到 8-10nm,衬底材料的 AES 峰衰减到零噪声水平。在 SiO2 衬底的情况下,对应于氧原子的峰,以及在 ZnO、GaAs 和 CdS 衬底的情况下对应于原子的峰,在 8-10nm 厚的 CuPc 沉积物的 AES 光谱中被清晰地记录下来。扩散到薄膜中的衬底原子成分的相对浓度与它们在纯衬底表面的相对浓度不同。CuPc 薄膜中衬底掺杂原子的浓度估计为每个 CuPc 分子一个原子。使用靶电流电子能谱,表明混合在 CuPc 薄膜中的衬底原子在未占据电子态密度中出现了一个新的峰。在 GaAs(100)、ZnO(0001)、Ge(111)表面的情况下,观察到直到 CuPc 沉积物达到 2-3nm 时,TCS 光谱的中间形成。中间光谱显示出一个不太明显的峰结构,与典型的 CuPc 薄膜不同。有人建议,由于与相对反应性半导体表面的相互作用,中间层是由完全或部分分解的 CuPc 分子形成的。