Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, Toledo, Spain.
Biomaterials. 2010 Dec;31(35):9244-55. doi: 10.1016/j.biomaterials.2010.08.057. Epub 2010 Sep 22.
Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies.
导电聚合物在开发先进的神经假体、仿生系统和神经修复装置方面具有广阔的前景。其中,掺杂聚苯乙烯磺酸盐的聚(3,4-亚乙基二氧噻吩)(PEDOT:PSS)具有优异的物理化学性能,但生物相容性问题限制了其应用。我们描述了电化学和分子自组装方法的组合,以一致地控制神经细胞在 PEDOT:PSS 上的发育,同时保持非常低的界面阻抗。电吸附聚赖氨酸使神经元能够在纳米结构聚合物上长期存活和生长。额外的一层 PSS 或肝素强烈抑制神经突的延伸,而这反过来又可以通过电去除或进一步用亚精胺涂层来激活细胞生长。将碱性成纤维细胞生长因子(bFGF)结合到肝素层上可以抑制神经元,但促进前体细胞的增殖和迁移。这种方法可以协调电活性聚合物上的神经细胞行为,从而改善假体装置中细胞/电极的通信,并为组织修复策略提供一个平台。