Suppr超能文献

丹麦区域性非黑色素瘤皮肤癌皮肤病学数据库注册:注册的完整性和关键变量的准确性。

Registration in the Danish Regional Nonmelanoma Skin Cancer Dermatology Database: completeness of registration and accuracy of key variables.

机构信息

Department of Dermatology.

出版信息

Clin Epidemiol. 2010 Aug 9;2:123-36. doi: 10.2147/clep.s9959.

Abstract

OBJECTIVE

To validate a clinical database for nonmelanoma skin cancer (NMSC) with the aim of monitoring and predicting the prognosis of NMSC treated by dermatologists in clinics in the central and north Denmark regions.

METHODS

We assessed the completeness of registration of patients and follow-up visits, and positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of registrations in the database. We used the Danish Pathology Registry (DPR) (n = 288) and a review of randomly selected medical records (n = 67) from two clinics as gold standards.

RESULTS

The completeness of registration of patients was 62% and 76% with DPR and medical record review as gold standards, respectively. The completeness of registration of 1st and 2nd follow up visits was 85% and 69%, respectively. The PPV and NPV ranged from 85% to 99%, and the sensitivity and specificity from 67% to 100%.

CONCLUSION

Overall, the accuracy of variables registered in the NMSC database was satisfactory but completeness of patient registration and follow-up visits were modest. The NMSC database is a potentially valuable tool for monitoring and facilitating improvement of NMSC treatment in dermatology clinics. However, there is still room for improvement of registration of both patients and their follow-up visits.

摘要

目的

验证一个用于非黑色素瘤皮肤癌(NMSC)的临床数据库,旨在监测和预测丹麦中北部地区皮肤科医生治疗 NMSC 的预后。

方法

我们评估了数据库中患者和随访就诊的登记完整性,以及登记的阳性预测值(PPV)、阴性预测值(NPV)、灵敏度和特异性。我们使用丹麦病理登记处(DPR)(n=288)和两个诊所的随机选择的病历回顾(n=67)作为金标准。

结果

以 DPR 和病历回顾为金标准,患者登记的完整性分别为 62%和 76%。1 次和 2 次随访就诊的登记完整性分别为 85%和 69%。PPV 和 NPV 范围为 85%至 99%,灵敏度和特异性范围为 67%至 100%。

结论

总体而言,NMSC 数据库中登记变量的准确性令人满意,但患者登记和随访就诊的完整性一般。NMSC 数据库是监测和促进皮肤科 NMSC 治疗改进的有潜力的工具。然而,患者和随访就诊的登记仍有改进的空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/865c/2943191/8d0a230c2dc4/clep-2-123f1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验