Suppr超能文献

非线性哈密顿振子的傅里叶级数展开

Fourier series expansion for nonlinear Hamiltonian oscillators.

作者信息

Méndez Vicenç, Sans Cristina, Campos Daniel, Llopis Isaac

机构信息

Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066201. doi: 10.1103/PhysRevE.81.066201. Epub 2010 Jun 1.

Abstract

The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.

摘要

非线性哈密顿振子问题是物理学中的经典问题之一。当无法得到解析解时,可以采用数值解法或围绕线性问题使用微扰理论。我们应用傅里叶级数展开来求振子位置作为时间函数的近似解以及周期 - 振幅关系。我们将我们的结果与其他近期方法进行比较,例如变分法或启发式近似,特别是任 - 何方法。基于其在杜芬振子、非线性摆和耳膜方程中的应用,结果表明傅里叶级数展开法是最精确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验