Franzrahe K, Nielaba P, Sengupta S
Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016112. doi: 10.1103/PhysRevE.82.016112. Epub 2010 Jul 22.
In soft matter systems the local displacement field can be accessed directly by video microscopy enabling one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial, nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe, Phys. Rev. E 78, 026106 (2008)10.1103/PhysRevE.78.026106]. In order to demonstrate the versatility of the analysis of these correlations and to make our calculations directly relevant for experiments on colloidal solids, we systematically study various parameters such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we show that special care needs to be taken for an accurate application of our results to actual experiments, where the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (χ) made up of nonaffine displacements. Several properties of χ may be rationalized for the harmonic solid using a simple "cell model" calculation. Furthermore the scaling behavior of the probability distribution of the noise field (χ) is studied. We find that for any inverse temperature β, spring constant f, density ρ and coarse-graining length Λ the probability distribution can be obtained from a master curve of the scaling variable X=χβf/ρΛ(2).
在软物质系统中,通过视频显微镜可以直接获取局部位移场,从而能够使用粗粒化过程计算这些系统中的局部应变场以及弹性模量。我们针对二维的简单三角形简谐晶格详细研究了这一过程。从蒙特卡罗模拟中的粒子构型获得的粗粒化局部应变会产生非平凡的、非局部的应变关联(磁化率)。这些关联可以在一个广义的、包含应变梯度中直至四次项的朗道型弹性哈密顿量框架内得到理解[K. Franzrahe, Phys. Rev. E 78, 026106 (2008)10.1103/PhysRevE.78.026106]。为了证明对这些关联进行分析的通用性,并使我们的计算与胶体固体实验直接相关,我们系统地研究了各种参数,如统计系综的选择、外部压力的存在以及边界条件。至关重要的是,我们表明,要将我们的结果准确应用于实际实验(其中被分析区域嵌入在一个与之机械耦合的更大系统中),需要格外小心。除了平滑的仿射应变场,粗粒化过程还会产生一个由非仿射位移组成的噪声场(χ)。使用简单的“元胞模型”计算可以解释谐波固体中χ的几个性质。此外,还研究了噪声场(χ)概率分布的标度行为。我们发现,对于任何逆温度β、弹簧常数f、密度ρ和粗粒化长度Λ,概率分布都可以从标度变量X = χβf/ρΛ(2)的主曲线中获得。