Saa Alberto, Venegeroles Roberto
Departamento de Matemática Aplicada, UNICAMP, Campinas, São Paulo, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):022106. doi: 10.1103/PhysRevE.82.022106. Epub 2010 Aug 26.
The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for t<t{c} , and the usual (relativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.
魏尔斯特拉斯随机游走是一种典型的马尔可夫链,会产生类似列维型的超扩散行为。众所周知,狭义相对论阻止了在闵可夫斯基时空中发生的任何过程中建立超扩散行为所需的任意高速度,这尤其意味着,任何描述时空现象的相对论性马尔可夫链本质上都必须是高斯型的。在此,我们引入魏尔斯特拉斯随机游走的一种简单相对论扩展,并表明必定存在一个过渡时间(t_c),它界定了两种性质截然不同的动力学 regime:对于(t < t_c) ,是(非相对论性的)超扩散列维飞行,而对于(t > t_c) ,是通常的(相对论性的)高斯扩散。针对一些具体例子讨论了不同扩散 regime 之间这种交叉的影响。对这样一个明确且简单的马尔可夫链的研究可以为在复杂得多的背景下获得的一些结果提供一些启示。