Zaburdaev V, Fouxon I, Denisov S, Barkai E
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany.
Institute of Supercomputing Technologies, Lobachevsky State University of Nizhny Novgorod, 603140 Nizhny Novgorod, Russia.
Phys Rev Lett. 2016 Dec 30;117(27):270601. doi: 10.1103/PhysRevLett.117.270601. Epub 2016 Dec 29.
It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from trajectories of the walkers by calculating the analogue of the Pearson coefficient.
现在人们认识到,从冷原子扩散到人类运动等各种现实生活中的现象,其扩散速度都比正常扩散快。莱维游走是一种在描述此类超扩散行为方面表现出色的模型,尽管它只适用于一维情况。在这里,我们表明,与标准随机游走不同,平面超扩散莱维游走的微观几何结构会印刻在游走者的渐近分布中。通过计算皮尔逊系数的类似物,可以从游走者的轨迹推断出基础游走的几何结构。