Faculty of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
Phys Rev Lett. 2010 Jun 18;104(24):240405. doi: 10.1103/PhysRevLett.104.240405. Epub 2010 Jun 17.
In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement.
在这封信中,我们通过提供第一个高度纠缠但几乎无法提取任何秘密的量子态的例子,阐明了纠缠和秘密之间的关系。更确切地说,我们为 d×d 维的完全反对称态的双体纠缠提供了两个界。首先,我们表明可以从该态中提取的秘密量很低;确切地说,它被限制在 O(1/d)内。其次,我们表明该态是高度纠缠的,因为我们需要大量单粒子来创建该态:纠缠代价大于一个常数,与 d 无关。为了得到我们的结果,我们使用了表示理论、线性规划和称为压扁纠缠的纠缠度量。我们的发现还澄清了压扁纠缠和相对纠缠熵之间的关系。