Dipartimento di Fisica Teorica, Università degli Studi di Torino, I-10125 Torino, Italy.
Phys Rev Lett. 2010 Sep 3;105(10):100503. doi: 10.1103/PhysRevLett.105.100503. Epub 2010 Sep 1.
We address the degradation of continuous variable (CV) entanglement in a noisy channel focusing on the set of photon-number entangled states. We exploit several separability criteria and compare the resulting separation times with the value of non-Gaussianity at any time, thus showing that in the low-temperature regime: (i) non-Gaussianity is a bound for the relative entropy of entanglement and (ii) Simon's criterion provides a reliable estimate of the separation time also for non-Gaussian states. We provide several evidences supporting the conjecture that Gaussian entanglement is the most robust against noise, i.e., it survives longer than a non-Gaussian one, and that this may be a general feature for CV systems in Markovian channels.
我们解决了连续变量 (CV) 纠缠在噪声信道中的退化问题,重点关注光子数纠缠态的集合。我们利用了几种可分离性准则,并将得到的分离时间与任意时间的非高斯值进行了比较,从而表明在低温 regime 下:(i) 非高斯性是纠缠相对熵的一个限制;(ii) Simon 准则也为非高斯态的分离时间提供了可靠的估计。我们提供了一些证据支持以下猜想:即高斯纠缠比非高斯纠缠更能抵抗噪声,也就是说,它比非高斯纠缠持续的时间更长,这可能是 Markovian 信道中 CV 系统的一个普遍特征。