Park Jiyong, Lu Yao, Lee Jaehak, Shen Yangchao, Zhang Kuan, Zhang Shuaining, Zubairy Muhammad Suhail, Kim Kihwan, Nha Hyunchul
Department of Physics, Texas A&M University at Qatar, Education City, Doha, Qatar.
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):891-896. doi: 10.1073/pnas.1617621114. Epub 2017 Jan 11.
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.
获取量子态信息的一种标准方法是测量相空间中沿许多不同轴的边缘分布,这构成了量子态层析成像的基础。我们从理论上提出并通过实验证明了一个通用框架,即仅通过观察单个边缘分布来体现非经典性,这为非经典性提供了独特的见解,并在各种量子系统中具有实际适用性。我们的方法通过将沿正交轴测量的分布或真空态分布相乘,将一维边缘分布映射为因式分解的二维分布。由此产生的虚拟维格纳函数仅对于非经典态才变得不符合物理实际;因此,相应密度算符的负性提供了非经典性的证据。此外,以这种方式测量的负性给出了纠缠势的下限——纠缠势是一种使用具有分束器设置的非经典态产生纠缠的度量,该分束器设置是产生连续变量(CV)纠缠态的典型模型。我们的方法以可靠且高效的方式检测高斯和非高斯非经典态。值得注意的是,对于任何大小的有限维福克空间中的所有非高斯态,无论测量轴如何,该方法都有效,并且还扩展到了与CV量子信息学相关的实验中的无限维态。我们通过实验说明了我们的判据对捕获离子运动态的作用,以与测量轴无关的方式证实了它们的非经典性。我们还讨论了我们的方法与相移操作相结合的扩展,这导致了对非经典性的更强测试,即在CV测量下检测真正的非高斯性。